Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Zoo Biol ; 43(3): 213-223, 2024.
Article in English | MEDLINE | ID: mdl-38294092

ABSTRACT

Vitamin E, as α-tocopherol, is an essential antioxidant protecting the body from free radicals. The vitamin E requirement of managed wildlife species is known to be greater than their wild counterparts, predominantly due to higher dietary lipid content and potentially stressful environments. The plains-wanderer (Pedionomus torquatus, Family Pedionomidae [monotypical]) is a critically endangered, superficially quail-like bird that is the focus of an ongoing captive breeding programme in Australia. It is estimated that plains-wanderers have a high vitamin E requirement (compared with domestic poultry species) to offset a high lipid diet and their naturally flighty temperament. This study therefore aims to gain a greater understanding of the nutritional status and vitamin E requirements of plains-wanderers in managed environments. Total lipid and α-tocopherol intake were quantified for 26 zoo-managed plains-wanderers over a series of diet intake trials in addition to measurement of plasma α-tocopherol and cholesterol concentrations. Plains-wanderers that consumed higher portions of dietary fat had significantly lower circulating α-tocopherol concentrations than birds that consumed lower total dietary fat (p < .001). Additionally, plasma cholesterol concentrations of managed plains-wanderers were found to be significantly greater than all other bird species reviewed, irrespective of Family or feeding type. We also present the first published data quantifying the nutritional makeup of stomach contents of a wild plains-wanderer for use as a potential guide for diet formulation. This study forms a vital foundational insight into the nutritional management of plains-wanderers, but further research is required to understand their dietary habits and cholesterol metabolism.


Subject(s)
Animal Nutritional Physiological Phenomena , Animals, Zoo , Diet , Vitamin E , Animals , Diet/veterinary , Vitamin E/analysis , Animal Feed/analysis , Male , Female , Cholesterol/blood , Dietary Fats/analysis , alpha-Tocopherol/blood , alpha-Tocopherol/analysis
2.
Anim Nutr ; 15: 399-408, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058566

ABSTRACT

The primary objective of this study was to investigate the influence of high and low inclusions of non-bound amino acid (NBAA) in standard and reduced-crude protein (CP), wheat-based diets on growth performance in broiler chickens. Dietary treatments were formulated to either 210 or 180 g/kg CP. The 210 g/kg CP diets contained either 12.1 or 21.1 g/kg NBAA and 180 g/kg CP diets contained either 44.0 or 55.5 g/kg NBAA. The formulations also generated different dietary starch:protein ratios which impacted on starch-protein digestive dynamics. Each of the four dietary treatments were offered to 7 replicates of 15 birds housed in floor pens from 14 to 35 days post-hatch or a total of 420 male Ross 308 chickens. Growth performance, relative abdominal fat-pad weights, breast muscle and leg shank yields were determined. Ileal starch and protein (N) digestibility coefficients, disappearance rates and starch:protein disappearance rate ratios were defined. Apparent ileal digestibility coefficients and disappearance rates of 16 amino acids were determined at 35 days post-hatch and free concentrations of 20 amino acids in systemic plasma were determined at 34 days post-hatch. The transition from 210 to 180 g/kg CP diets depressed weight gain by 11.3% (1742 versus 1964 g/bird) and FCR by 10.4% (1.606 versus 1.455), although both parameters were subject to treatment interactions. The treatment interaction (P < 0.001) observed for FCR was because high NBAA inclusions significantly improved FCR by 4.17% (1.424 versus 1.486) in birds offered 210 g/kg CP diets, but significantly depressed FCR by 3.36% (1.632 versus 1.579) in 180 g/kg CP diets. A quadratic relationship (r = 0.860; P < 0.001) between dietary NBAA inclusions and FCR was detected, which indicated that when NBAA inclusions exceed 18.5 g/kg efficiency of feed conversion deteriorated. However, a multiple linear regression (r = 0.913; P < 0.001) was detected for FCR where both NBAA inclusions and analysed dietary starch:protein ratios were significantly (P < 0.001) related to FCR. This relationship indicates that growth performance of broiler chickens offered wheat-based diets is strongly influenced by dietary NBAA inclusions coupled with dietary starch:protein ratios and consideration is given to the possible underlying mechanisms.

3.
Poult Sci ; 102(10): 102932, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517362

ABSTRACT

This study was designed to investigate the impacts of 2 energy densities (13.0 and 12.5 MJ/kg ME) in wheat-based diets with 3 tiers of CP concentrations (210, 190, and 170 g/kg) on the performance of broiler chickens. The parameters assessed included growth performance (15-36 d posthatch), carcass traits, nutrient utilization, starch-protein digestive dynamics, apparent ileal amino acid digestibility coefficients, and the free amino acid and ammonia (NH3) concentrations in systemic plasma. Also, the feasibility of substituting soybean meal with canola meal in 190 g/kg CP diets was investigated. The dietary CP reduction from 210 to 170 g/kg significantly compromised weight gain by 12.4% (1,890 vs. 2158 g/bird) and FCR by 5.33% (1.501 vs. 1.425). The 0.5 MJ energy density reduction compromised FCR by 3.25% (1.525 vs. 1.477; P = 0.013) in birds offered 170 g/kg CP diets. Reducing dietary CP and energy densities interactively influenced (P = 0.027) apparent metabolizable energy (AME) and nitrogen corrected metabolizable energy (AMEn) (P = 0.022) such that reducing dietary CP increased these parameters but reducing dietary energy densities decreased AME and AMEn. The 150 g/kg canola meal inclusion with the elimination of soybean meal displayed some promise. Dietary CP reductions (and increased nonbound amino acid inclusions) linearly associated with increased plasma ammonia (NH3) concentrations (r = -0.607; P = 0.010) and plasma NH3 was linearly related to depressed weight gains (r = -0.565; P = 0.018). The association of dietary non-protein-bound amino acid (NPBAA) inclusions and elevated plasma NH3 concentrations have profound implications for the successful development of reduced-CP, wheat-based broiler diets.


Subject(s)
Brassica napus , Chickens , Animals , Triticum/metabolism , Ammonia/metabolism , Dietary Proteins/metabolism , Diet/veterinary , Weight Gain , Digestion , Amino Acids/metabolism , Glycine max/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Energy Metabolism
4.
Poult Sci ; 101(12): 102171, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36240635

ABSTRACT

The present study was designed to re-evaluate the ideal amino acid ratios of total sulphur amino acids (TSAA), Thr, Val, Ile, Trp, and Arg relative to Lys during peak and post-peak production phases in laying hens by using seven independent amino acid assays in similar experimental setting. A total of 348 twenty wk old Isa Brown laying hens were allocated to individual battery cages. Each dietary treatment included 6 replicates with 2 single cages (2 birds) as one replicate. All diets were formulated based on maize, soybean meal, and canola meal to have identical crude protein (120 g/kg) concentrations and energy density (11.9 MJ/kg) but with 5 levels of dietary concentrations of tested amino acids. Hens were offered experimental diets from 27 to 33 wk of age in experiment 1 (Exp. 1) and from 42 to 48 wk of age in experiment 2 (Exp. 2). Daily egg production and weekly egg weights were recorded, and feed intakes were calculated for each experimental period to determine egg production rate, egg mass, and feed conversion ratio (FCR). Linear and quadratic broken line models were used to estimate amino acid requirements on egg production rate, egg mass and FCR. Overall, quadratic broken line models estimated higher amino acid requirements for egg mass, egg production rate and FCR than linear broken line models by 23, 25, and 20%, respectively. The predicted daily Lys intake recommendation was 720 mg/bird/day with linear broken line model and 897 mg/bird/day with quadratic broken line model and the recommended ideal amino acid ratios relative to Lys are 85 for TSAA, 69 for Thr, 83 for Val, 87 for Ile, 22 for Trp, and 82 for Arg based on linear broken line model and 87 for TSAA, 67 for Thr, 83 for Val, 86 for Ile, 22 for Trp, and 78 for Arg based on quadratic broken line model estimations.


Subject(s)
Amino Acids, Sulfur , Animal Nutritional Physiological Phenomena , Animals , Female , Animal Feed/analysis , Chickens/metabolism , Ovum , Amino Acids, Essential/metabolism , Amino Acids/metabolism , Amino Acids, Sulfur/metabolism , Diet/veterinary
5.
Anim Nutr ; 11: 181-189, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36263404

ABSTRACT

The objective of this review is to identify the shortfalls of wheat-based, crude protein (CP)-reduced diets for broiler chickens as wheat is inferior to maize in this context but to inconsistent extents. Inherent factors in wheat may be compromising gut integrity; these include soluble non-starch polysaccharides (NSP), amylase trypsin inhibitors (ATI) and gluten. Soluble NSP in wheat induce increased gut viscosities, which can lead to compromised gut integrity, which is not entirely ameliorated by NSP-degrading feed enzymes. Wheat ATI probably compromise gut integrity and may also have the capacity to increase endogenous amino acid flows and decrease apparent starch and protein digestibilities. Gluten inclusions of 20 g/kg in a maize-soy diet depressed weight gain and feed intake and higher gluten inclusions have been shown to activate inflammatory cytokine-related genes in broiler chickens. Further research is required, perhaps particularly in relation to wheat ATI. The protein content of wheat is typically higher than maize; importantly, this results in higher inclusions of non-bound amino acids in CP-reduced broiler diets. These higher inclusions could trigger post-enteral amino acid imbalances, leading to the deamination of surplus amino acids and the generation of ammonia (NH3) which, if not adequately detoxified, results in compromised growth performance from NH3 overload. Thus, alternatives to non-bound amino acids to meet amino acid requirements in birds offered CP-reduced, wheat-based diets merit evaluation. The digestion of wheat starch is more rapid than that of maize starch which may be a disadvantage as the provision of some slowly digestible starch in broiler diets may enhance performance. Alternatively, slowly digestible starch may result in more de novo lipogenesis. Therefore, it may prove instructive to evaluate CP-reduced diets based on maize-wheat and/or sorghum-wheat blends rather than entirely wheat. This would reduce non-bound amino acid inclusions by lowering dietary CP derived from feed grains and may enhance starch digestive dynamics by retarding starch digestion rates. Also, the use of biomarkers to monitor gut integrity in broiler chickens is examined where calprotectin, ovotransferrin and possibly citrulline appear to hold promise, but their validation requires further research.

6.
Anim Nutr ; 9: 204-213, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35600555

ABSTRACT

A total of 360 male, off-sex Ross 308 chicks were offered 10 dietary treatments from 14 to 35 d post-hatch in an equilateral-triangle response surface design feeding study in order to confirm the importance of protein and amino acid digestive dynamics in broiler chickens. The 3 apical diets were nutritionally-equivalent containing either soybean meal, non-bound amino acids or whey protein concentrate as the major source of dietary protein and amino acids. Appropriate blends of the 3 apical diets comprised the balance of 7 diets and each dietary treatment was offered to 6 replicate cages with 6 birds per cage. Growth performance, nutrient utilisation, apparent protein and starch digestibility coefficients were determined in 4 small intestinal segments. The optimal weight gain (2,085 g/bird) and feed conversion ratios (FCR, 1.397) were generated by Diet 50S50W which included a 50:50 blend of apical diets rich in whey protein concentrate and soybean meal. Broiler chickens offered Diet 50S50W also had the highest experimental and predicted jejunal digestibility (0.685 in proximal jejunum and 0.823 in distal jejunum). FCR was not correlated with apparent distal ileal digestibility coefficient (P > 0.05) of protein but was correlated with apparent protein digestibility in proximal jejunum (r = -0.369, P = 0.040) and distal jejunum (r = -0.316, P = 0.015). Surplus dietary starch was correlated with increased fat pad weight (r = 0.781, P = 0.008). The findings confirmed the relevance of protein digestion rate, reflected by jejunal digestibility, on feed conversion of broiler chickens. A balance between protein-bound and non-bound crystalline or synthetic amino acids may be required for optimal growth and protein digestion.

7.
Anim Nutr ; 10: 1-11, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35601257

ABSTRACT

As lowering crude protein (CP) in poultry diets continues to minimize amino acid excess, it is important to understand the limiting order of amino acids and the impact of their deficiencies. Therefore, a pair of experiments were conducted to observe the effects of individual amino acid deletions on growth performance, carcass traits, and nutrient utilization. Both experiments involved 3 control diets based on wheat and soybean meal, including a 210.0 g/kg CP industry control (IC), 186.7 g/kg CP positive control (PC) supplemented with feed-grade amino acids to match the IC amino acid profile, 186.7 g/kg CP negative control (NC) with reducing N corrected apparent metabolizable energy (AMEN) by 0.5 MJ/kg and removing feed-grade amino acids beyond L-Lys-HCl, DL-Met, and L-Thr from PC. Ten deletion diets where the following supplemented amino acids were individually removed from the PC: Val, Ile, Leu, Trp, Arg, His, Phe + Tyr, glycine equivalence (Glyequi), Pro, and Energy (0.5 MJ/kg reduction in AMEN of the PC). All diets were formulated to contain similar concentrations of digestible Lys, total sulfur amino acid (TSAA) and Thr. Experimental diets were offered to broiler chickens from 15 to 22 d post-hatch in a cage study (Exp. 1) to gain digestibility and nutrient utilization data; whereas they were offered from 15 to 35 d post-hatch in a floor-pen study (Exp. 2) to gain performance and carcass yield data. The removal of supplemented Val, Arg, and Ile resulted in reduction on broiler performance (P < 0.05), and the removal of Val, Arg, Ile, and Glyequi negatively influenced carcass traits (P < 0.05). Results from both experiments indicate that Val and Arg are co-limiting in wheat-soybean meal diets, but that Ile and Glyequi may potentially limit breast and thigh development.

8.
PLoS One ; 17(3): e0266080, 2022.
Article in English | MEDLINE | ID: mdl-35353869

ABSTRACT

In a Box-Behnken assessment of elevated branched-chain amino acids (BCAA), 13 nutritionally equivalent maize-based diets were offered to a total of 390 off-sex male Ross 308 broiler chickens from 7 to 28 days post-hatch. The BCAA concentrations investigated in reduced-crude protein diets were 12.5, 15.5, 18.3 g/kg leucine (125, 155, 183); 8.9, 10.2, 12.5 g/kg valine (89, 102, 125) and 7.2, 8.9, 10.8 g/kg isoleucine (72, 89, 109), where their relativity to 11.0 g/kg digestible lysine are shown in parentheses. Determined parameters included growth performance, relative abdominal fat-pad weights, nutrient utilisation, apparent digestibility coefficients, disappearance rates of 16 amino acids and free amino acid systemic plasma concentrations. Increasing dietary leucine linearly depressed weight gain and quadratically influenced FCR where the estimated minimum FCR of 1.418 was with 14.99 g/kg leucine. Polynomial regression analysis and surface response curves of determined parameters were generated for significant (P < 0.05) BCAA variables, based on lack of fit (P > 0.005). Quadratic and cross-product responses were observed for weight gain, FCR, AME, AMEn, N retention and apparent digestibility of 13 amino acids. Relative fat-pad weights declined linearly with increasing isoleucine and valine. The lowest N retention was estimated at a combination of 15.25 and 10.50 g/kg leucine and valine respectively whilst the highest mean digestibility coefficient (0.793) of amino acids was estimated at a combination of 15.74 and 10.47 g/kg of leucine and valine respectively. The remaining parameter minima or maxima responses were not able to be determined since they were outside the extreme BCAA treatment levels. Increasing dietary BCAA significantly increased apparent ileal digestibilities and disappearance rates of BCAA. Systemic plasma concentrations of valine increased (P < 0.001) with increasing dietary valine but leucine was not influenced (P > 0.25). Systemic plasma concentration of isoleucine was maximised (P < 0.001) only when accompanied by elevated dietary leucine. Also, dietary treatments influenced (P < 0.05) apparent disappearance rates of all the essential amino acids analysed, with the exception of methionine. Whilst overall growth performance was not disadvantaged (P > 0.10) by elevated BCAA levels, compared with 2019 Ross 308 performance objectives, polynomial regression analysis suggested both interaction and antagonism between BCAA.


Subject(s)
Chickens , Isoleucine , Amino Acids/metabolism , Amino Acids, Branched-Chain , Animal Feed/analysis , Animals , Diet/veterinary , Diet, Protein-Restricted , Leucine , Male , Valine , Weight Gain/physiology
9.
Anim Nutr ; 8(1): 160-168, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34977386

ABSTRACT

Graded quantities of 1.38, 2.76 and 4.14 g/kg L-methionine were included in a control diet formulated to contain 3.07 g/kg digestible methionine. Each of the 4 dietary treatments was offered to 6 replicate cages (initially 8 birds per cage) from 1 to 21 d post-hatch. The parameters assessed included growth performance, nutrient utilisation (apparent metabolisable energy [AME], AME:GE ratios, N retention, N-corrected apparent metabolisable energy [AMEn]), apparent digestibility coefficients and disappearance rates of amino acids in the distal ileum. They also included free amino concentrations in systemic plasma (brachial vein) at 20 d post-hatch and in hepatic tissue at 14 and 21 d post-hatch. Graded L-methionine inclusions quadratically influenced weight gain (r = 0.688; P = 0.001) and FCR (r = 0.780; P < 0.001). It may be deduced from the quadratic regressions that 3.43 g/kg L-methionine supported maximum weight gain of 1,036 g/kg and 3.50 g/kg L-methionine minimum FCR of 1.193, from 1 to 21 d post-hatch. The control diet contained specified levels of 3.07 g/kg digestible methionine and 13.0 g/kg digestible lysine. Thus, an inclusion of 3.465 g/kg L-methionine corresponded to a total of 6.535 g/kg methionine or a methionine-to-lysine ratio of 50.3, which is higher than standard recommendations. The implications of this and other outcomes of the present study are reported and discussed.

10.
PLoS One ; 16(11): e0260285, 2021.
Article in English | MEDLINE | ID: mdl-34797900

ABSTRACT

The objective of this study was to investigate the impacts of dietary crude protein (CP), fishmeal and sorghum on nutrient utilisation, digestibility coefficients and disappearance rates of starch and protein, amino acid concentrations in systemic plasma and their relevance to growth performance of broiler chickens using the Box-Behnken response surface design. The design consisted of three factors at three levels including dietary CP (190, 210, 230 g/kg), fishmeal (0, 50, 100 g/kg), and sorghum (0, 150, 300 g/kg). A total of 390 male, off-sex Ross 308 chicks were offered experimental diets from 14 to 35 days post-hatch. Growth performance, nutrient utilisation, starch and protein digestibilities and plasma free amino acids were determined. Dietary CP had a negative linear impact on weight gain where the transition from 230 to 190 g/kg CP increased weight gain by 9.43% (1835 versus 2008 g/bird, P = 0.006). Moreover, dietary CP linearly depressed feed intake (r = -0.486. P < 0.001). Fishmeal inclusions had negative linear impacts on weight gain (r = -0.751, P < 0.001) and feed intake (r = -0.495, P < 0.001). There was an interaction between dietary CP and fishmeal for FCR. However, growth performance was not influenced by dietary inclusions of sorghum. Total plasma amino acid concentrations were negatively related to weight gain (r = -0.519, P < 0.0001). The dietary transition from 0 to 100 g/kg fishmeal increased total amino acid concentrations in systemic plasma by 35% (771 versus 1037 µg/mL, P < 0.001). It may be deduced that optimal weight gain (2157 g/bird), optimal feed intake (3330 g/bird) and minimal FCR (1.544) were found in birds offered 190 g/kg CP diets without fishmeal inclusion, irrespective of sorghum inclusions. Both fishmeal and sorghum inclusions did not alter protein and starch digestion rate in broiler chickens; however, moderate reductions in dietary CP could advantage broiler growth performance.


Subject(s)
Chickens/metabolism , Dietary Proteins/metabolism , Edible Grain/metabolism , Sorghum/metabolism , Triticum/metabolism , Amino Acids/metabolism , Animals , Dietary Supplements , Eating/physiology , Male , Nutrients/metabolism , Plasma/metabolism , Starch/metabolism , Weight Gain/physiology
11.
Anim Nutr ; 7(4): 939-946, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34703911

ABSTRACT

In a previous experiment, male Ross 308 broiler chickens were offered dietary treatments with 3 levels of crude protein (222, 193, 165 g/kg) and 3 feed grains (ground maize, ground wheat, whole wheat) from 7 to 35 d post-hatch. Maize-based diets supported superior growth performance in comparison to wheat-based diets. Uric acid concentrations in excreta were retrospectively determined and related to total nitrogen (N) excreta concentrations. Uric acid concentrations ranged from 28.5 to 69.4 mg/g and proportions of uric acid-N to total excreta-N ranged from 27.4% to 42.6% in broiler chickens offered the 3 × 3 factorial array of dietary treatments. Proportions of uric acid-N to total N in excreta in birds offered the 165 g/kg CP, maize-based diet were significantly lower by 10.6 percentage units (27.4% versus 38.0%; P = 0.00057) than their wheat-based counterparts. Total excreta analysed had been collected from 35 to 37 d post-hatch when feed intakes and excreta outputs were monitored. There were linear relationships between proportions of uric acid-N to total N in excreta in birds offered the three 165 g/kg CP diets with weight gain (r = -0.587; P = 0.010), feed intake (r = -0.526; P = 0.025) and feed conversion ratios (r = 0.635; P = 0.005). The possibility that increasing uric acid-N proportions in excreta is indicative of excessive ammonia accumulations compromising growth performance is discussed. The mean proportion of dietary glycine involved in uric acid excretion was 49.2% across all dietary treatments but ranged from 25.0% to 80.9%. Thus, the appropriate amount of dietary glycine is variable and largely dependent on the volume of uric acid synthesised and excreted.

12.
Animals (Basel) ; 11(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34438749

ABSTRACT

This review considers the conversion of dietary protein and amino acids into chicken-meat protein and seeks to identify strategies whereby this transition may be enhanced. Viable alternatives to soybean meal would be advantageous but the increasing availability of non-bound amino acids is providing the opportunity to develop reduced-crude protein (CP) diets, to promote the sustainability of the chicken-meat industry and is the focus of this review. Digestion of protein and intestinal uptakes of amino acids is critical to broiler growth performance. However, the transition of amino acids across enterocytes of the gut mucosa is complicated by their entry into either anabolic or catabolic pathways, which reduces their post-enteral availability. Both amino acids and glucose are catabolised in enterocytes to meet the energy needs of the gut. Therefore, starch and protein digestive dynamics and the possible manipulation of this 'catabolic ratio' assume importance. Finally, net deposition of protein in skeletal muscle is governed by the synchronised availability of amino acids and glucose at sites of protein deposition. There is a real need for more fundamental and applied research targeting areas where our knowledge is lacking relative to other animal species to enhance the conversion of dietary protein and amino acids into chicken-meat protein.

13.
Anim Nutr ; 6(4): 521-528, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33364469

ABSTRACT

This study determined the variations in protein digestibilities and digestion rates in broiler chickens offered diets containing 7 different meat and bone meals (MBM). A total of 252 male Ross 308 broiler chickens were offered 7 atypical diets largely based on maize and MBM from 24 to 28 d post-hatch. Each experimental diet was offered to 6 replicates with 6 birds per replicate cage. Excreta were collected in their entirety from 25 to 27 d post-hatch and on 28 d post-hatch. Digesta samples were collected from the proximal jejunum, distal jejunum, proximal ileum and distal ileum. Apparent digestibilities of protein were determined in each segment and apparent digestibilities of amino acids were measured in the distal ileum. There were significant differences in apparent protein digestibility coefficients in the proximal jejunum (P = 0.006), where broiler chickens offered the high ash beef meal (diet 7) generated the lowest protein digestibility in the proximal jejunum (0.318). Similarly, there were significant differences in apparent digestibility coefficients in the distal jejunum (P < 0.001) and distal ileum (P < 0.001) but not in the proximal ileum. More pronounced differences were found in the disappearance rate of protein and there were significant differences in all 4 segments of the small intestine (P < 0.001). Broiler chickens offered the high ash beef meal had the lowest protein disappearance rate (P < 0.001). No difference was observed in the predicted protein digestion rate (P = 0.486) but chickens offered the high ash beef meal had the lowest potential digestible protein (0.662, P = 0.034) whereas the highest potential digestible protein (0.739) was detected in diet 5 (containing a beef meal). This study contributed to the establishment of a preliminary database to include digestion rates of starch and protein into practical diet formulation.

14.
Anim Nutr ; 6(2): 168-178, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32542197

ABSTRACT

The hypothesis that capping dietary starch:protein ratios would enhance the performance of broiler chickens offered reduced-crude protein (CP) diets was tested in this experiment. A total of 432 off-sex, male Ross 308 chicks were allocated to 7 dietary treatments from 7 to 35 d post-hatch. The experimental design consisted of a 3 × 2 factorial array of treatments with the seventh treatment serving as a positive control. Three levels of dietary CP (197.5, 180.0 and 162.5 g/kg) with either uncapped or capped dietary starch:protein ratios constituted the factorial array of treatments, whilst the positive control diet contained 215.0 g/kg CP. The positive control diet had an analysed dietary starch:protein ratio of 1.50 as opposed to a ratio of 1.68 in the uncapped 197.5 g/kg CP diet and 1.41 in the corresponding capped diet and the capped 197.5 g/kg CP diet displayed promise. The growth performance this diet matched the positive control but outperformed the uncapped 197.5 g/kg CP diet by 10.4% (2,161 vs. 1,958; P = 0.009) in weight gain, by 3.10% (3,492 vs. 3,387; P = 0.019) in feed intake on the basis of pair-wise comparisons and numerically improved FCR by 4.04% (1.616 vs. 1.684). However, the growth performance of birds offered the 180.0 and 162.5 g/kg CP dietary treatments was remarkably inferior, irrespective of dietary starch:protein ratios. This inferior growth performance was associated with poor feathering and even feather-pecking and significant linear relationships between feather scores and parameters of growth performance were observed. The amino acid profile of feathers was determined where cysteine, glutamic acid, glycine, proline and serine were dominant in a crude protein content of 931 g/kg. Presumably, the feathering issues observed were manifestations of amino acid inadequacies or imbalances in the more reduced-CP diets and consideration is given to the implications of these outcomes.

15.
Animals (Basel) ; 10(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331461

ABSTRACT

: This review explores the premise that non-bound (synthetic and crystalline) amino acids are alternatives to soybean meal, the dominant source of protein, in diets for broiler chickens. Non-bound essential and non-essential amino acids can partially replace soybean meal so that requirements are still met but dietary crude protein levels are reduced. This review considers the production of non-bound amino acids, soybeans, and soybean meal and discusses the concept of reduced-crude protein diets. There is a focus on specific amino acids, including glycine, serine, threonine, and branched-chain amino acids, because they may be pivotal to the successful development of reduced-crude protein diets. Presently, moderate dietary crude protein reductions of approximately 30 g/kg are feasible, but more radical reductions compromise broiler performance. In theory, an 'ideal' amino acid profile would prevent this, but this is not necessarily the case in practice. The dependence of the chicken-meat industry on soybean meal will be halved if crude protein reductions in the order of 50 g/kg are attained without compromising the growth performance of broiler chickens. In this event, synthetic and crystalline, or non-bound, amino acids will become viable alternatives to soybean meal in chicken-meat production.

16.
PLoS One ; 14(3): e0213875, 2019.
Article in English | MEDLINE | ID: mdl-30897122

ABSTRACT

A Box-Behnken designed study was completed to predict growth performance, carcass characteristics and plasma hormone and metabolite levels as influenced by dietary energy, amino acid densities and starch to lipid ratios in male broiler chickens. The design comprised three dietary energy densities (11.25, 12.375 and 13.5 MJ/kg), three digestible lysine concentrations (9.2, 10.65 and 12.1 g/kg) and three starch to lipid ratios (4.5, 12.25 and 20.0) in broiler diets based on maize and soybean meal. Each of thirteen dietary treatments was offered to 10 replicates of 15 birds per replicate floor pen or a total of 1,950 Ross 308 male broiler chickens from 21 to 35 days post-hatch. Increasing dietary energy decreased feed intake with a quadratic relationship between feed intake and dietary standardised ileal digestible (SID) Lys concentrations, where increasing SID Lys initially increased and then depressed feed intake. Increasing dietary amino acid density increased body weight gain and carcass weight; however, dietary energy did not influence body weight gain, carcass and breast meat weight. Feed efficiency was positively influenced by energy and amino acid densities but negatively influenced by starch to lipid ratios and energy and amino acids had more pronounced impacts than starch to lipid ratios. This study indicated that both energy and amino acid densities regulate feed intakes in broiler chickens. Body weight gain of modern broiler chickens is more responsive to amino acid densities; nevertheless, dietary energy density continues to play an important role in protein utilisation, as reflected in significantly reduced plasma uric acid levels.


Subject(s)
Chickens/growth & development , Diet , Energy Metabolism/physiology , Lipids/chemistry , Lysine/chemistry , Animal Feed/analysis , Animals , Body Weight , Chickens/blood , Linear Models , Lysine/metabolism , Male , Starch/metabolism
17.
Anim Nutr ; 4(1): 17-30, 2018 Mar.
Article in English | MEDLINE | ID: mdl-30167480

ABSTRACT

This review is an outlook for sorghum as a feed grain for broiler chickens based on a survey of relevant stake-holders and recent research outcomes. Australian grain sorghum production will probably continue to generate a harvest in the order of 2.5 × 106 t of which some 7.9 × 105 t will be used as a feed grain for poultry and pigs. Feed grains are included primarily to provide energy from starch, but energy utilisation by broiler chickens offered sorghum-based diets is relatively inferior, because of incomplete starch digestion. Kafirin, the dominant protein fraction, 'non-tannin' phenolic compounds and phytate are 3 'starch extrinsic' factors in sorghum that compromise starch digestibility and energy utilisation in broiler chickens offered sorghum-based diets. Kafirin concentrations in 6 sorghum varieties were negatively correlated with metabolizable energy to gross energy (ME:GE) ratios (r = -0.891; P < 0.02) or the efficiency of energy utilisation in broiler chickens. Importantly, kafirin proportions of sorghum protein may be increasing with time in Australia. If so, this represents a fundamental challenge to sorghum breeders which presumably could be met by the development of sorghum varieties with different characteristics, especially in relation to the γ- and ß-kafirin fractions. White sorghum varieties contain lower polyphenol concentrations which should be advantageous as concentrations of total phenolic compounds were negatively correlated to ME:GE ratios (r = -0.838; P < 0.04) in 6 sorghum varieties. It would be desirable if more white varieties were to become available. It is suggested that responses to exogenous phytase in birds offered sorghum-based diets would be more robust if sorghum were to contain lower concentrations of kafirin and phenolic compounds. Paradoxically, while better sorghum varieties almost certainly could be developed, it may not necessarily follow that they will command a price premium from poultry and pig producers.

18.
PLoS One ; 12(10): e0185480, 2017.
Article in English | MEDLINE | ID: mdl-29053729

ABSTRACT

A total of 360 male Ross 308 broiler chickens were used in a feeding study to assess the influence of macronutrients and energy density on feed intakes from 10 to 31 days post-hatch. The study comprised ten dietary treatments from five dietary combinations and two feeding approaches: sequential and choice feeding. The study included eight experimental diets and each dietary combination was made from three experimental diets. Choice fed birds selected between three diets in separate feed trays at the same time; whereas the three diets were offered to sequentially fed birds on an alternate basis during the experimental period. There were no differences between starch and protein intakes between choice and sequentially fed birds (P > 0.05) when broiler chickens selected between diets with different starch, protein and lipid concentrations. When broiler chickens selected between diets with different starch and protein but similar lipid concentrations, both sequentially and choice fed birds selected similar ratios of starch and protein intake (P > 0.05). However, when broiler chickens selected from diets with different protein and lipid but similar starch concentrations, choice fed birds had higher lipid intake (129 versus 118 g/bird, P = 0.027) and selected diets with lower protein concentrations (258 versus 281 g/kg, P = 0.042) than birds offered sequential diet options. Choice fed birds had greater intakes of the high energy diet (1471 g/bird, P < 0.0001) than low energy (197 g/bird) or medium energy diets (663 g/bird) whilst broiler chickens were offered diets with different energy densities but high crude protein (300 g/kg) or digestible lysine (17.5 g/kg) concentrations. Choice fed birds had lower FCR (1.217 versus 1.327 g/g, P < 0.0001) and higher carcass yield (88.1 versus 87.3%, P = 0.012) than sequentially fed birds. This suggests that the dietary balance between protein and energy is essential for optimal feed conversion efficiency. The intake path of macronutrients from 10-31 days in choice and sequential feeding groups were plotted and compared with the null path if broiler chickens selected equal amounts of the three diets in the combination. Regardless of feeding regimen, the intake paths of starch and protein are very close to the null path; however, lipid and protein intake paths in choice fed birds are father from the null path than sequentially fed birds.


Subject(s)
Animal Feed , Diet , Animals , Chickens , Male
19.
Br J Nutr ; 118(4): 250-262, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28875867

ABSTRACT

A total of ten experimental diets with protein concentrations ranging from 154 to 400 g/kg and two lipid levels (46 and 85 g/kg) with identical energy densities were offered to 240 male Ross 308 broilers from 7 to 28 d post-hatch. Growth performance was monitored and nutrient utilisation (apparent metabolisable energy (AME), N-corrected AME (AMEn), AME daily intake, AME:gross energy ratios, N retention) was determined. The weight gain response of broiler chickens to dietary protein concentrations in diets containing high and low lipid levels was diverse, with the relevant quadratic regressions being significantly different (P0·05). AMEn was also linearly (P<0·0001) increased with dietary protein concentrations but regressions in diets with low and high lipid content were significantly different (P<0·03). Carcass protein content increased linearly with dietary protein content in diets containing high lipid concentrations (r 0·933, P<0·0001); by contrast, this relationship was quadratic (R 2=0·93, P<0·0001) in diets with low lipid levels. In conclusion, predictably, the effects of dietary protein concentrations on broiler performance were profound; however, the impact of dietary protein on performance in broiler chickens was modified by dietary lipid concentrations.


Subject(s)
Chickens , Diet/veterinary , Dietary Fats/pharmacology , Dietary Proteins/pharmacology , Energy Metabolism/drug effects , Meat/analysis , Weight Gain , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Dietary Fats/administration & dosage , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Male
20.
Anim Nutr ; 3(1): 11-18, 2017 Mar.
Article in English | MEDLINE | ID: mdl-29767118

ABSTRACT

Thirteen extensively characterised grain sorghum varieties were evaluated in a series of 7 broiler bioassays. The efficiency of energy utilisation of broiler chickens offered sorghum-based diets is problematic and the bulk of dietary energy is derived from sorghum starch. For this reason, rapid visco-analysis (RVA) starch pasting profiles were determined as they may have the potential to assess the quality of sorghum as a feed grain for chicken-meat production. In review, it was found that concentrations of kafirin and total phenolic compounds were negatively correlated with peak and holding RVA viscosities to significant extents across 13 sorghums. In a meta-analysis of 5 broiler bioassays it was found that peak, holding, breakdown and final RVA viscosities were positively correlated with ME:GE ratios and peak and breakdown RVA viscosities with apparent metabolizable energy corrected for nitrogen (AMEn) to significant extents. In a sixth study involving 10 sorghum-based diets peak, holding and breakdown RVA viscosities were positively correlated with ME:GE ratios and AMEn. Therefore, it emerged that RVA starch pasting profiles do hold promise as a relatively rapid means to assess sorghum quality as a feed grain for chicken-meat production. This potential appears to be linked to quantities of kafirin and total phenolic compounds present in sorghum and it would seem that both factors depress RVA starch viscosities in vitro and, in turn, also depress energy utilisation in birds offered sorghum-based diets. Given that other feed grains do not contain kafirin and possess considerably lower concentrations of phenolic compounds, their RVA starch pasting profiles may not be equally indicative.

SELECTION OF CITATIONS
SEARCH DETAIL
...