Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Aging ; 2(12): 1191-1206, 2022 12.
Article in English | MEDLINE | ID: mdl-37118543

ABSTRACT

Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.


Subject(s)
Aging , Transcriptome , Humans , Animals , Mice , Transcriptome/genetics , Aging/genetics , Longevity/genetics , Gene Expression Profiling , Risk Factors
2.
J R Soc Interface ; 15(138)2018 01.
Article in English | MEDLINE | ID: mdl-29386398

ABSTRACT

The unequal utilization of synonymous codons affects numerous cellular processes including translation rates, protein folding and mRNA degradation. In order to understand the biological impact of variable codon usage bias (CUB) between genes and genomes, it is crucial to be able to accurately measure CUB for a given sequence. A large number of metrics have been developed for this purpose, but there is currently no way of systematically testing the accuracy of individual metrics or knowing whether metrics provide consistent results. This lack of standardization can result in false-positive and false-negative findings if underpowered or inaccurate metrics are applied as tools for discovery. Here, we show that the choice of CUB metric impacts both the significance and measured effect sizes in numerous empirical datasets, raising questions about the generality of findings in published research. To bring about standardization, we developed a novel method to create synthetic protein-coding DNA sequences according to different models of codon usage. We use these benchmark sequences to identify the most accurate and robust metrics with regard to sequence length, GC content and amino acid heterogeneity. Finally, we show how our benchmark can aid the development of new metrics by providing feedback on its performance compared to the state of the art.


Subject(s)
Codon , Evolution, Molecular , Models, Genetic
3.
PLoS Comput Biol ; 12(11): e1005184, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27835644

ABSTRACT

The existence of over- and under-represented sequence motifs in genomes provides evidence of selective evolutionary pressures on biological mechanisms such as transcription, translation, ligand-substrate binding, and host immunity. In order to accurately identify motifs and other genome-scale patterns of interest, it is essential to be able to generate accurate null models that are appropriate for the sequences under study. While many tools have been developed to create random nucleotide sequences, protein coding sequences are subject to a unique set of constraints that complicates the process of generating appropriate null models. There are currently no tools available that allow users to create random coding sequences with specified amino acid composition and GC content for the purpose of hypothesis testing. Using the principle of maximum entropy, we developed a method that generates unbiased random sequences with pre-specified amino acid and GC content, which we have developed into a python package. Our method is the simplest way to obtain maximally unbiased random sequences that are subject to GC usage and primary amino acid sequence constraints. Furthermore, this approach can easily be expanded to create unbiased random sequences that incorporate more complicated constraints such as individual nucleotide usage or even di-nucleotide frequencies. The ability to generate correctly specified null models will allow researchers to accurately identify sequence motifs which will lead to a better understanding of biological processes as well as more effective engineering of biological systems.


Subject(s)
Base Composition/genetics , Protein Engineering/methods , Proteins/chemistry , Proteins/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, Protein/methods , Software , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...