Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1221849, 2023.
Article in English | MEDLINE | ID: mdl-37675045

ABSTRACT

Ulcerative colitis (UC) is a refractory inflammatory bowel disease, and the outcomes of conventional therapies of UC, including 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are not satisfied with patients and physicians with regard to adverse reactions and financial burden. The abnormality of the intestinal mucosal barrier in the pathogenesis of UC was verified. Qingchang Suppository (QCS) is an herbal preparation and is effective in treating ulcerative proctitis. The mechanism of QCS and its active ingredients have not been concluded especially in mucosal healing. This review elucidated the potential mechanism of QCS from the intestinal mucosal barrier perspective to help exploring future QCS research directions.

2.
World J Clin Cases ; 11(15): 3578-3582, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37383901

ABSTRACT

BACKGROUND: Massive intragastric clotting (MIC) makes endoscopic therapy difficult in patients with acute upper gastrointestinal bleeding. Literature data on how to address this problem are limited. Here, we report on a case of massive stomach bleeding with MIC that was successfully treated endoscopically using an overtube of single-balloon enteroscopy. CASE SUMMARY: A 62-year-old gentleman with metastatic lung cancer was admitted to the intensive care unit due to tarry stools and hematemesis of 1500 mL of blood during hospitalization. Emergent esophagogastroduodenoscopy revealed massive blood clots and fresh blood in the stomach with evidence of active bleeding. Bleeding sites could not be observed even by changing the patient's position and aggressive endoscope suction. The MIC was successfully removed using an overtube connected with a suction pipe, which was inserted into the stomach with an overtube of a single-balloon enteroscope. An ultrathin gastroscope was also introduced through the nose into the stomach to guide the suction. A massive blood clot was successfully removed, and an ulcer with oozing bleeding at the inferior lesser curvature of the upper gastric body was revealed, facilitating endoscopic hemostatic therapy. CONCLUSION: This technique appears to be a previously unreported method to suction MIC out of the stomach in patients with acute upper gastrointestinal bleeding. This technique could be considered when other methods are not available or if they fail to remove massive blood clots in the stomach.

3.
Inflamm Bowel Dis ; 29(5): 818-829, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36166586

ABSTRACT

Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, are characterized by chronic idiopathic inflammation of gastrointestinal tract. Although the pathogenesis of IBD remains unknown, intestinal immune dysfunction has been considered as the core pathogenesis. In the intestinal immune system, T helper 1 (Th1) and Th17 cells are indispensable for intestine homeostasis via preventing pathogenic bacteria invasion, regulating metabolism and functions of intestinal epithelial cells (IECs), and promoting IEC self-renewal. However, during the development of IBD, Th1 and Th17 cells acquire the pathogenicity and change from the maintainer of intestinal homeostasis to the destroyer of intestinal mucosa. Because of coexpressing interferon-γ and interleukin-17A, Th17 cells with pathogenicity are named as pathogenic Th17 cells. In disease states, Th1 cells impair IEC programs by inducing IEC apoptosis, recruiting immune cells, promoting adhesion molecules expression of IECs, and differentiating to epithelial cell adhesion molecule-specific interferon γ-positive Th1 cells. Pathogenic Th17 cells induce IEC injury by triggering IBD susceptibility genes expression of IECs and specifically killing IECs. In addition, Th1 and pathogenic Th17 cells could cooperate to induce colitis. The evidences from IBD patients and animal models demonstrate that synergistic action of Th1 and pathogenic Th17 cells occurs in the diseases development and aggravates the mucosal inflammation. In this review, we focused on Th1 and Th17 cell programs in homeostasis and intestine inflammation and specifically discussed the impact of Th1 and Th17 cell pathogenicity and their synergistic action on the onset and the development of IBD. We hoped to provide some clues for treating IBD.


Although treatment methods have been comprehensively optimized, the death risk of inflammatory bowel disease (IBD) patients is higher than that of healthy control subjects and still gradually increasing. Even so, the pathogenesis of IBD remains poorly understood. A better understanding of the roles of T helper 1 and pathogenic T helper 17 cells in the pathogenesis of IBD may provide some promising clues for treating IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Th17 Cells , Virulence , Inflammatory Bowel Diseases/pathology , Colitis/pathology , Th1 Cells/metabolism , Inflammation/pathology , Intestinal Mucosa/pathology , Interferon-gamma/metabolism
4.
Medicine (Baltimore) ; 101(46): e31791, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36401463

ABSTRACT

Restless legs syndrome (RLS) is a neurological motor disorder with a high prevalence. The treatment efficacy of RLS is unsatisfactory. Radix Paeoniae Alba (RPA) can effectively treat RLS symptoms such as the discomfort of the legs. RPA has great potential for the development of new medications for RLS. Hence, we explored the mechanism of RPA in the treatment of RLS using network pharmacology and molecular docking. The active components and targets of RPA were obtained from the Traditional Chinese Medicine System Pharmacology database and analysis platform and PharmMapper platform. The RLS-related targets were found in GeneCards, OMIM, DrugBank, and DisGeNET databases. The overlapping targets of RPA and RLS were then collected. The "active components-overlapping targets" network was built, and network topology analysis was performed. Furthermore, Cytoscape 3.9.1 software was used to screen the key components of RPA in the treatment of RLS. Protein-protein interaction was performed using the Search Tool for the Retrieval of Interacting Genes. The gene ontology functions and Kyoto Encyclopedia of Genes and Genomes signaling pathways were analyzed using ClusterProfiler, PathView, and other R packages to reveal the main mechanism of RPA in treating RLS. Component and protein structures were downloaded from the Traditional Chinese Medicine System Pharmacology and Protein Data Bank databases, respectively. The AutoDock 4.2.6 software was used for molecular docking. A total of 12 active components and 109 targets of RPA, as well as 2387 RLS-related targets, were collected. Following that, 47 overlapping targets were obtained. Furthermore, 5 key components and 12 core targets were screened. The results of gene ontology functions were as follows: 2368 biological processes, 264 molecular functions, and 164 cellular components. A total of 207 Kyoto Encyclopedia of Genes and Genomes signaling pathways were obtained, including the lipid and atherosclerosis pathway, the endocrine resistance pathway, the prolactin signaling pathway, and the IL-17 signaling pathway. The components and the core targets completed molecular docking stably. RPA has multi-component, multi-target, and multi-pathway characteristics in treating RLS, which could provide a basis for future research and improve clinical efficacy.


Subject(s)
Restless Legs Syndrome , Humans , Molecular Docking Simulation , Restless Legs Syndrome/drug therapy , Network Pharmacology , Medicine, Chinese Traditional , Gene Ontology
5.
Article in English | MEDLINE | ID: mdl-34765000

ABSTRACT

OBJECTIVES: Ulcerative colitis (UC) is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide. This study was designed to uncover the healing effect of friedelin, a bioactive compound against UC through bioinformatics of network pharmacology and experimental verification of UC model mice. MATERIALS AND METHODS: Targets of friedelin and potential mechanism of friedelin on UC were predicted through target searching, PPI network establishing, and enrichment analyzing. We explored effects of friedelin on dextran sulfate sodium (DSS)-induced colitis. Severity of UC was investigated by body weight, disease activity index (DAI), and length of the colon. Inflammation severity was examined by determination of proinflammatory and anti-inflammatory cytokines. The numbers of autophagosome around the epithelial cells were observed by autophagy inhibition via a transmission electron microscope. The expressions of autophagy-related ATG5 protein and AMPK-mTOR signaling pathway were determined by immunofluorescence staining. RESULTS: In this study, 17 potential targets of friedelin and 1111 UC-related targets were identified. 10 therapeutic targets of friedelin against UC were acquired from overlapped targets of UC and friedelin. PPI network construction filtered 14 core targets through target amplification and confidence enhancement. The results of molecular docking showed that the docking scores of the top 5 active targets were higher than the threshold values. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out, showing friedelin alleviates UC through anti-inflammatory pathways and molecular function of autophagy. Subsequently, animal-based experiments revealed the intraperitoneal injection of friedelin ameliorated DSS-induced body weight loss, DAI decrease, colon length shortening and colonic pathological damage with lower myeloperoxidase and proinflammatory cytokines (IL-1ß and IL-6) and higher IL-10 levels, and more autophagosomes in transmission electron microscope results. The AMPK-mTOR signaling pathway plays important role in the friedelin's effect in autophagy as KEGG pathway result and experiment verification. Furthermore, the 3 ma validated the role of autophagy as an improvement in the friedelin's pharmacologic effect to UC model mice. CONCLUSIONS: Friedelin ameliorated DSS-induced colitis in mice through of inflammatory inhibition and regulation of autophagy.

6.
Article in English | MEDLINE | ID: mdl-34221084

ABSTRACT

AIM: The incidence of ulcerative colitis (UC) is increasing steadily in developed countries, it is plaguing nearly 1 million people in the United States and European countries, while developing countries have had a rapidly increased incidence over the past decades. Curcuma is widely used in treating malaria, UC, Crohn's disease, and colon cancer, which lead to diarrhea and bloody stool. However, the systemic mechanism of curcuma in treating UC is still unclear. Our work was supposed to expound how does curcuma alleviate UC in a comprehensive and systematic way by network pharmacology, molecular docking, and experiment verification. METHODS: Traditional Chinese Medicine System Pharmacology Database (TCMSP), Shanghai Chemistry & Chemical Industry Data Platform (SGST), and papers published in Chinese Network Knowledge Infrastructure (CNKI) and PubMed were used to collect the chemical constituents of curcuma based on ADME (absorption, distribution, metabolism, and excretion). And effective targets were predicted by Swiss Target Prediction to establish the curcuma-related database. The disease targets of UC were screened by GeneCards and DrugBank databases, and Wayne (Venn) analysis was carried out with curcuma targets to determine the intersection targets. AutoDock software and TCMNPAS system were used to dock the core chemical components of curcuma with key UC targets. Protein interaction (PPI) network was constructed based on the STRING database and Cytoscape software. Gene function GO analysis and KEGG pathway enrichment analysis were carried out by using Metascape database. Finally, HE staining was performed to identify the inflammatory infiltration and expression difference in TNF-α and STAT3 before and after the treatment of curcuma which was verified by immunoblotting. RESULTS: Twelve active components containing 148 target genes were selected from curcuma. Potential therapeutic targets of curcuma in the treatment of UC were acquired from 54 overlapped targets from UC and curcuma. Molecular docking was used to filter the exact 24 core proteins interacting with compounds whose docking energy is lower than -5.5 and stronger than that of 5-aminosalicylic acid (5-ASA). GO and KEGG analyses showed that these targets were highly correlated with EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, MAPK signaling pathway, and inflammatory bowel disease (IBD). Experiments verified curcuma relieved pathological manifestation and decreased the expression of TNF-α and STAT3. CONCLUSION: Curcuma relieved the colon inflammation of ulcerative colitis via inactivating TNF pathway, inflammatory bowel disease pathway, and epithelial cell signaling in Helicobacter pylori infection pathway, probably by binding to STAT3 and TNF-α.

7.
Article in English | MEDLINE | ID: mdl-33178313

ABSTRACT

AIM: Stroke is the second significant cause for death, with ischemic stroke (IS) being the main type threatening human being's health. Acorus tatarinowii (AT) is widely used in the treatment of Alzheimer disease, epilepsy, depression, and stroke, which leads to disorders of consciousness disease. However, the systemic mechanism of AT treating IS is unexplicit. This article is supposed to explain why AT has an effect on the treatment of IS in a comprehensive and systematic way by network pharmacology. METHODS AND MATERIALS: ADME (absorbed, distributed, metabolized, and excreted) is an important property for screening-related compounds in AT, which were screening out of TCMSP, TCMID, Chemistry Database, and literature from CNKI. Then, these targets related to screened compounds were predicted via Swiss Targets, when AT-related targets database was established. The gene targets related to IS were collected from DisGeNET and GeneCards. IS-AT is a common protein interactive network established by STRING Database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analysed by IS-AT common target genes. Cytoscape software was used to establish a visualized network for active compounds-core targets and core target proteins-proteins interactive network. Furthermore, we drew a signal pathway picture about its effect to reveal the basic mechanism of AT against IS systematically. RESULTS: There were 53 active compounds screened from AT, inferring the main therapeutic substances as follows: bisasaricin, 3-cyclohexene-1-methanol-α,α,4-trimethyl,acetate, cis,cis,cis-7,10,13-hexadecatrienal, hydroxyacoronene, nerolidol, galgravin, veraguensin, 2'-o-methyl isoliquiritigenin, gamma-asarone, and alpha-asarone. We obtained 398 related targets, 63 of which were the same as the IS-related genes from targets prediction. Except for GRM2, remaining 62 target genes have an interactive relation, respectively. The top 10 degree core target genes were IL6, TNF, IL1B, TLR4, NOS3, MAPK1, PTGS2, VEGFA, JUN, and MMP9. There were more than 20 terms of biological process, 7 terms of cellular components, and 14 terms of molecular function through GO enrichment analysis and 13 terms of signal pathway from KEGG enrichment analysis based on P < 0.05. CONCLUSION: AT had a therapeutic effect for ischemic via multicomponent, multitarget, and multisignal pathway, which provided a novel research aspect for AT against IS.

8.
Cancer Res ; 65(8): 3236-42, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15833855

ABSTRACT

Arsenic is an important environmental carcinogen that affects millions of people worldwide through contaminated water supplies. For decades, arsenic was considered a nongenotoxic carcinogen. Using the highly sensitive A(L) mutation assay, we previously showed that arsenic is, indeed, a potent gene and chromosomal mutagen and that its effects are mediated through the induction of reactive oxygen species. However, the origin of these radicals and the pathways involved are not known. Here we show that mitochondrial damage plays a crucial role in arsenic mutagenicity. Treatment of enucleated cells with arsenic followed by rescue fusion with karyoplasts from controls resulted in significant mutant induction. In contrast, treatment of mitochondrial DNA-depleted (rho(0)) cells produced few or no mutations. Mitochondrial damage can lead to the release of superoxide anions, which then react with nitric oxide to produce the highly reactive peroxynitrites. The mutagenic damage was dampened by the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine. These data illustrate that mitochondria are a primary target in arsenic-induced genotoxic response and that a better understanding of the mutagenic/carcinogenic mechanism of arsenic should provide a basis for better interventional approach in both treatment and prevention of arsenic-induced cancer.


Subject(s)
Arsenites/toxicity , Mitochondria/drug effects , Sodium Compounds/toxicity , Tyrosine/analogs & derivatives , Animals , CHO Cells , Cricetinae , DNA Damage , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/genetics , Humans , Hybrid Cells , Intracellular Membranes/drug effects , Intracellular Membranes/physiology , Membrane Potentials/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/physiology , Mutagenicity Tests , Peroxynitrous Acid/metabolism , Proteins/metabolism , Reactive Oxygen Species/metabolism , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...