Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31921707

ABSTRACT

Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously shown to exhibit strong synergy in growth, biofilm formation and virulence in an animal model of disease. The motility of T. denticola, although not considered as a classic virulence factor, may be involved in synergistic biofilm development between P. gingivalis and T. denticola. We determined the role of T. denticola motility in polymicrobial biofilm development using an optimized transformation protocol to produce two T. denticola mutants targeting the motility machinery. These deletion mutants were non-motile and lacked the gene encoding the flagellar hook protein of the periplasmic flagella (ΔflgE) or a component of the stator motor that drives the flagella (ΔmotB). The specificity of these gene deletions was determined by whole genome sequencing. Quantitative proteomic analyses of mutant strains revealed that the specific inactivation of the motility-associated gene, motB, had effects beyond motility. There were 64 and 326 proteins that changed in abundance in the ΔflgE and ΔmotB mutants, respectively. In the ΔflgE mutant, motility-associated proteins showed the most significant change in abundance confirming the phenotype change for the mutant was related to motility. However, the inactivation of motB as well as stopping motility also upregulated cellular stress responses in the mutant indicating pleiotropic effects of the mutation. T. denticola wild-type and P. gingivalis displayed synergistic biofilm development with a 2-fold higher biomass of the dual-species biofilms than the sum of the monospecies biofilms. Inactivation of T. denticola flgE and motB reduced this synergy. A 5-fold reduction in dual-species biofilm biomass was found with the motility-specific ΔflgE mutant suggesting that T. denticola periplasmic flagella are essential in synergistic biofilm formation with P. gingivalis.


Subject(s)
Bacterial Proteins/genetics , Biofilms/growth & development , Porphyromonas gingivalis/growth & development , Treponema denticola/genetics , Animals , Chronic Periodontitis/microbiology , Gene Deletion , Genome, Bacterial/genetics , Humans , Locomotion/genetics , Locomotion/physiology , Microbial Interactions/physiology , Treponema denticola/growth & development , Treponema denticola/pathogenicity , Virulence Factors/genetics , Virulence Factors/metabolism , Whole Genome Sequencing
2.
PLoS One ; 11(9): e0162322, 2016.
Article in English | MEDLINE | ID: mdl-27589264

ABSTRACT

Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.


Subject(s)
Biofilms/drug effects , Caseins/pharmacology , Glass Ionomer Cements , Streptococcus mutans/drug effects , Biofilms/growth & development , Dental Caries/prevention & control , Humans , Streptococcus mutans/growth & development
3.
Antimicrob Agents Chemother ; 58(1): 378-85, 2014.
Article in English | MEDLINE | ID: mdl-24165189

ABSTRACT

Bacterial pathogens commonly associated with chronic periodontitis are the spirochete Treponema denticola and the Gram-negative, proteolytic species Porphyromonas gingivalis and Tannerella forsythia. These species rely on complex anaerobic respiration of amino acids, and the anthelmintic drug oxantel has been shown to inhibit fumarate reductase (Frd) activity in some pathogenic bacteria and inhibit P. gingivalis homotypic biofilm formation. Here, we demonstrate that oxantel inhibited P. gingivalis Frd activity with a 50% inhibitory concentration (IC50) of 2.2 µM and planktonic growth of T. forsythia with a MIC of 295 µM, but it had no effect on the growth of T. denticola. Oxantel treatment caused the downregulation of six P. gingivalis gene products and the upregulation of 22 gene products. All of these genes are part of a regulon controlled by heme availability. There was no large-scale change in the expression of genes encoding metabolic enzymes, indicating that P. gingivalis may be unable to overcome Frd inhibition. Oxantel disrupted the development of polymicrobial biofilms composed of P. gingivalis, T. forsythia, and T. denticola in a concentration-dependent manner. In these biofilms, all three species were inhibited to a similar degree, demonstrating the synergistic nature of biofilm formation by these species and the dependence of T. denticola on the other two species. In a murine alveolar bone loss model of periodontitis oxantel addition to the drinking water of P. gingivalis-infected mice reduced bone loss to the same level as the uninfected control.


Subject(s)
Antinematodal Agents/pharmacology , Antinematodal Agents/therapeutic use , Pyrantel/analogs & derivatives , Treponema denticola/drug effects , Animals , Biofilms/drug effects , Mice , Periodontitis/microbiology , Porphyromonas gingivalis/drug effects , Pyrantel/pharmacology , Pyrantel/therapeutic use , Succinate Dehydrogenase/metabolism , Treponema denticola/enzymology
4.
J Dent ; 41(6): 521-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23583527

ABSTRACT

UNLABELLED: Caseinomacropeptide (CMP), the variably phosphorylated and glycosylated forms of the bovine milk protein fragment, κ-casein(106-169), is produced during cheese production and has been shown to have a range of antibacterial bioactivities. OBJECTIVES: To characterise the biofilm disruptive component of CMP and compare its activity with the known antimicrobial agents chlorhexidine and zinc ions. METHODS: Streptococcus mutans biofilms were grown in flow cells with an artificial saliva medium containing sucrose and treated with CMP and the glycosylated forms of κ-casein(106-169) (κ-casein glycopeptide, KCG). The biofilms were imaged using confocal laser scanning microscopy (CLSM) and quantified by COMSTAT software analysis. A static biofilm assay and flow cytometric analysis were used to examine the mechanism of action of chlorhexidine and a combination of KCG with the known antimicrobial agent ZnCl2 (KCG-Zn). RESULTS: CLSM analysis showed that S. mutans produced robust, structured biofilms with an average thickness of 7.37µm and a biovolume of 3.88µm(3)/µm(2) substratum after 16h of incubation in the flow cell system. A single application of 10mg/mL CMP that contained 2.4mg/mL KCG significantly reduced total biofilm biovolume and average biofilm thickness by 53% and 61%, respectively. This was statistically the same as a 2.4mg/mL KCG treatment that reduced the total biovolume and average thickness by 59% and 69%, respectively, suggesting the KCG was the biofilm disruptive component of CMP. Chlorhexidine treatment (0.1%) caused similar effects in the flow cell model. KCG-Zn caused significantly more disruption of the biofilms than either KCG or ZnCl2 treatment alone. In a static biofilm model chlorhexidine was shown to work by disrupting bacterial membrane integrity whilst KCG-Zn had no effect on membrane integrity. CONCLUSIONS: KCG and KCG-Zn may have potential as natural biofilm disruptive agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Caseins/pharmacology , Chelating Agents/pharmacology , Peptide Fragments/pharmacology , Streptococcus mutans/drug effects , Bacteriological Techniques , Biofilms/growth & development , Chlorhexidine/pharmacology , Chlorides/pharmacology , Culture Media , Diffusion Chambers, Culture , Flow Cytometry , Humans , Microscopy, Confocal , Saliva, Artificial , Streptococcus mutans/physiology , Sucrose , Zinc Compounds/pharmacology
5.
Antimicrob Agents Chemother ; 56(3): 1548-56, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22214780

ABSTRACT

Porphyromonas gingivalis is a bacterial pathogen associated with chronic periodontitis that results in destruction of the tooth's supporting tissues. The major virulence determinants of P. gingivalis are its cell surface Arg- and Lys-specific cysteine proteinases, RgpA/B and Kgp. Lactoferrin (LF), an 80-kDa iron-binding glycoprotein found in saliva and gingival crevicular fluid, is believed to play an important role in innate immunity. In this study, bovine milk LF displayed proteinase inhibitory activity against P. gingivalis whole cells, significantly inhibiting both Arg- and Lys-specific proteolytic activities. LF inhibited the Arg-specific activity of purified RgpB, which lacks adhesin domains, and also inhibited the same activity of the RgpA/Kgp proteinase-adhesin complexes in a time-dependent manner, with a first-order inactivation rate constant (k(inact)) of 0.023 min(-1) and an inhibitor affinity constant (K(I)) of 5.02 µM. LF inhibited P. gingivalis biofilm formation by >80% at concentrations above 0.625 µM. LF was relatively resistant to hydrolysis by P. gingivalis cells but was cleaved into two major polypeptides (53 and 33 kDa) at R(284) to S(285), as determined by in-source decay mass spectrometry; however, these polypeptides remained associated with each other and retained inhibitory activity. The biofilm inhibitory activity of LF against P. gingivalis was not attributed to direct antibacterial activity, as LF displayed little growth inhibitory activity against planktonic cells. As the known RgpA/B and Kgp inhibitor N-α-p-tosyl-l-lysine chloromethylketone also inhibited P. gingivalis biofilm formation, the antibiofilm effect of LF may at least in part be attributable to its antiproteinase activity.


Subject(s)
Adhesins, Bacterial/metabolism , Biofilms/drug effects , Cysteine Endopeptidases/metabolism , Lactoferrin/pharmacology , Porphyromonas gingivalis/drug effects , Protease Inhibitors/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Amino Acid Sequence , Animals , Binding Sites , Biofilms/growth & development , Cattle , Gingipain Cysteine Endopeptidases , Gingival Crevicular Fluid/immunology , Gingival Crevicular Fluid/metabolism , Kinetics , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Porphyromonas gingivalis/enzymology , Porphyromonas gingivalis/growth & development , Protein Binding , Saliva/immunology , Saliva/metabolism
6.
Antimicrob Agents Chemother ; 54(3): 1311-4, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20038616

ABSTRACT

Porphyromonas gingivalis is a major pathogen of chronic periodontitis and exists in a biofilm on the surface of the tooth root. Oxantel, a cholinergic anthelmintic and fumarate reductase inhibitor, significantly inhibited biofilm formation by P. gingivalis and disrupted established biofilms at concentrations below its MIC against planktonic cells. Oxantel was more effective against P. gingivalis in biofilm than metronidazole, a commonly used antibiotic for periodontitis.


Subject(s)
Biofilms/drug effects , Porphyromonas gingivalis/drug effects , Pyrantel/analogs & derivatives , Succinate Dehydrogenase/antagonists & inhibitors , Biofilms/growth & development , Humans , Microbial Sensitivity Tests , Microscopy, Confocal , Periodontitis/microbiology , Plankton/drug effects , Porphyromonas gingivalis/growth & development , Porphyromonas gingivalis/ultrastructure , Pyrantel/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...