Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(22): e202403844, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38518115

ABSTRACT

Paired redox-neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non-toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C-C cross-coupling reactions. Here, we report the electro/Ni dual-catalyzed redox-neutral decarboxylative C(sp3)-C(sp2) cross-coupling reactions of pristine carboxylates with aryl bromides. At a cathode, a NiII(Ar)(Br) intermediate is formed through the activation of Ar-Br bond by a NiI-bipyridine catalyst and subsequent reduction. At an anode, the carboxylates, including amino acid, benzyl carboxylic acid, and 2-phenoxy propionic acid, undergo oxidative decarboxylation to form carbon-based free radicals. The combination of NiII(Ar)(Br) intermediate and carbon radical results in the formation of C(sp3)-C(sp2) cross-coupling products. The adaptation of this electrosynthesis method to flow synthesis and valuable molecule synthesis was demonstrated. The reaction mechanism was systematically studied through electrochemical voltammetry and density functional theory (DFT) computational studies. The relationships between the electrochemical properties of carboxylates and the reaction selectivity were revealed. The electro/Ni dual-catalyzed cross-coupling reactions described herein expand the chemical space of paired electrochemical C(sp3)-C(sp2) cross-coupling and represent a promising method for the construction of the C(sp3)-C(sp2) bonds because of the ubiquitous carboxylate nucleophiles and the innate scalability and flexibility of electrochemical flow-synthesis technology.

5.
Faraday Discuss ; 247(0): 136-146, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37492890

ABSTRACT

Ni-catalyzed electrochemical arylation is an attractive, emerging approach for molecular construction as it uses air-stable Ni catalysts and efficiently proceeds at room temperature. However, the homo-coupling of aryl halide substrates is one of the major side reactions. Herein, extensive experimental and computational studies were conducted to examine the mechanism of Ni-catalyzed electrochemical homo-coupling of aryl halides. The results indicate that an unstable NiII(Ar)Br intermediate formed through oxidative addition of the cathodically generated NiI species with aryl bromide and a consecutive chemical reduction step. For electron-rich aryl halides, homo-coupling reaction efficiency is limited by the oxidative addition step, which can be improved by negatively shifting the redox potential of the Ni-catalyst. DFT computational studies suggest a NiIII(Ar)Br2/NiII(Ar)Br ligand exchange pathway for the formation of a high-valent NiIII(Ar)2Br intermediate for reductive elimination and production of the biaryl product. This work reveals the reaction mechanism of Ni-catalyzed electrochemical homo-coupling of aryl halides, which may provide valuable information for developing cross-coupling reactions with high selectivity.

6.
J Am Chem Soc ; 145(29): 16130-16141, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37433081

ABSTRACT

Ni-catalyzed electrochemical aryl amination (e-amination) is an attractive, emerging approach to building C-N bonds. Here, we report in-depth experimental and computational studies that examined the mechanism of Ni-catalyzed e-amination reactions. Key NiII-amine dibromide and NiII aryl amido intermediates were chemically synthesized and characterized. The combination of experiments and DFT calculations suggest (1) there is coordination of an amine to the NiII catalyst before the cathodic reduction and oxidative addition steps, (2) a stable NiII aryl amido intermediate is produced from the cathodic half-reaction, a critical step in controlling the selectivity between cross-coupling and undesired homo-coupling reaction pathways, (3) the diazabicycloundecene additive shifts the aryl halide oxidative addition mechanism from a NiI-based pathway to a Ni0-based pathway, and (4) redox-active bromide in the supporting electrolyte functions as a redox mediator to promote the oxidation of the stable NiII aryl amido intermediate to a NiIII aryl amido intermediate. Subsequently, the NiIII aryl amido intermediate undergoes facile reductive elimination to provide a C-N cross-coupling product at room temperature. Overall, our results provide new fundamental understandings about this e-amination reaction and guidance for further development of other Ni-catalyzed electrosynthetic reactions such as C-C and C-O cross-couplings.

7.
Nature ; 617(7960): 299-305, 2023 May.
Article in English | MEDLINE | ID: mdl-37100908

ABSTRACT

The enhancement of separation processes and electrochemical technologies such as water electrolysers1,2, fuel cells3,4, redox flow batteries5,6 and ion-capture electrodialysis7 depends on the development of low-resistance and high-selectivity ion-transport membranes. The transport of ions through these membranes depends on the overall energy barriers imposed by the collective interplay of pore architecture and pore-analyte interaction8,9. However, it remains challenging to design efficient, scaleable and low-cost selective ion-transport membranes that provide ion channels for low-energy-barrier transport. Here we pursue a strategy that allows the diffusion limit of ions in water to be approached for large-area, free-standing, synthetic membranes using covalently bonded polymer frameworks with rigidity-confined ion channels. The near-frictionless ion flow is synergistically fulfilled by robust micropore confinement and multi-interaction between ion and membrane, which afford, for instance, a Na+ diffusion coefficient of 1.18 × 10-9 m2 s-1, close to the value in pure water at infinite dilution, and an area-specific membrane resistance as low as 0.17 Ω cm2. We demonstrate highly efficient membranes in rapidly charging aqueous organic redox flow batteries that deliver both high energy efficiency and high-capacity utilization at extremely high current densities (up to 500 mA cm-2), and also that avoid crossover-induced capacity decay. This membrane design concept may be broadly applicable to membranes for a wide range of electrochemical devices and for precise molecular separation.

8.
Angew Chem Int Ed Engl ; 62(7): e202216662, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36526569

ABSTRACT

Aqueous organic redox flow batteries (AORFBs) have received increasing attention as an emergent battery technology for grid-scale renewable energy storage. However, physicochemical properties of redox-active organic electrolytes remain fine refinement to maximize their performance in RFBs. Herein, we report a carboxylate functionalized viologen derivative, N,N'-dibutyrate-4,4'-bipyridinium, (CBu)2 V, as a highly stable, high capacity anolyte material under near pH neutral conditions. (CBu)2 V can achieve solubility of 2.1 M and display a reversible, kinetically fast reduction at -0.43 V vs NHE at pH 9. DFT studies revealed that the high solubility of (CBu)2 V is attributed to its high molecular polarity while its negative reduction potential is benefitted from electron-donating carboxylate groups. A 0.89 V (CBu)2 V/(NH)4 Fe(CN)6 AORFB demonstrated exceptional energy storage performance, specifically, 100 % capacity retention with a discharge energy density of 9.5 Wh L-1 for 1000 cycles, power densities of up to 85 mW cm-2 , and an energy efficiency of 70 % at 60 mA cm-2 . (CBu)2 V not only represents the most capacity dense viologen with pendant ionic groups and also exhibits the longest (1200 hours or 50 days) and the most stable flow battery performance to date.

9.
Chem Sci ; 13(20): 5797-5812, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35685805

ABSTRACT

The increasing energy storage demand of portable devices, electric vehicles, and scalable energy storage has been driving extensive research for more affordable, more energy dense battery technologies than Li ion batteries. The alkaline earth metal, calcium (Ca), has been considered an attractive anode material to develop the next generation of rechargeable batteries. Herein, the chemical designs, electrochemical performance, and solution and interfacial chemistry of Ca2+ electrolytes are comprehensively reviewed and discussed. In addition, a few recommendations are presented to guide the development and evaluation of Ca2+ electrolytes in future.

10.
Angew Chem Int Ed Engl ; 61(30): e202204030, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35523722

ABSTRACT

Zinc metal represents a low-cost, high-capacity anode material to develop energy-dense aqueous redox-flow batteries (RFB). However, the energy-storage applications of traditional inorganic Zn halide flow batteries are primarily plagued by the material challenges of traditional halide cathode electrolytes (e.g., bromine), including corrosion, toxicity, and severe crossover. Herein, we report a bipolar zinc-ferrocene salt compound, zinc 1,1'-bis(3-sulfonatopropyl)ferrocene, Zn[Fc(SPr)2 ] (1.80 M solubility or 48.2 Ah L- charge storage capacity)-a robust, energy-dense, bipolar redox-active electrolyte material for RFBs. Zn[Fc(SPr)2 ]-based redox-flow batteries operated at high current densities of up to 200 mA cm-2 and delivered an energy efficiency of up to 81.5 % and a power density of up to 270.5 mW cm-2 . A Zn[Fc(SPr)2 ] flow battery demonstrated an energy density of 20.2 Wh L-1 and displayed nearly 100 % capacity retention for 2000 cycles (1284 h or 53.5 days).

11.
Angew Chem Int Ed Engl ; 60(49): 25839-25845, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34595813

ABSTRACT

The active site of [FeFe]-hydrogenase (H2 ase) is preorganized with an amine (azadithiolate) as a proton relay and a [4Fe4S] subunit as an electron reservoir, which together lower the overpotential for proton reduction and hydrogen oxidation by multiple-site concerted proton-electron transfer (MS-CPET). Herein, we report a mononuclear manganese complex, fac-[Mn(CO)3 (6-(2-hydroxyphenol)-2-pyridine-2-quinoline) Br] (1), as a rare model to fully mimic the functions of the H2 ase. In 1, a redox-active bidentate ligand with a pendent phenol replicates the roles of the electron reservoir and the proton relay in the enzyme. Experimental and theoretical studies revealed two consecutive MS-CPET processes in the catalytic cycle, in each of which an electron stored in the reductive ligand and a proton at the proximal phenol moiety are transferred to the Mn center in a concerted way. By virtue of this mechanism, complex 1 exhibited a low overpotential comparable to that of natural enzyme in electrochemical hydrogen production using phenol as a proton source.


Subject(s)
Coordination Complexes/metabolism , Hydrogenase/metabolism , Iron-Sulfur Proteins/metabolism , Manganese/metabolism , Protons , Coordination Complexes/chemistry , Density Functional Theory , Electron Transport , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Manganese/chemistry , Molecular Conformation
12.
Science ; 372(6544): 788-789, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34016766
13.
Chem Catal ; 1(5): 966-967, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-37693688

ABSTRACT

In this issue of Chem Catalysis, Liang et al. report an efficient electrochemical cyclization reaction of alkenes and amides to produce oxazolines with broad substrate scopes and good selectivities. A chloronium species generated by the chloride-mediated redox catalysis is proposed as a key intermediate.

14.
Angew Chem Int Ed Engl ; 60(11): 6107-6116, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33289231

ABSTRACT

Reported here is the redox neutral electrochemical C(sp2 )-C(sp3 ) cross-coupling reaction of bench-stable aryl halides or ß-bromostyrene (electrophiles) and benzylic trifluoroborates (nucleophiles) using nonprecious, bench-stable NiCl2 ⋅glyme/polypyridine catalysts in an undivided cell configuration under ambient conditions. The broad reaction scope and good yields of the Ni-catalyzed electrochemical coupling reactions were confirmed by 50 examples of aryl/ß-styrenyl chloride/bromide and benzylic trifluoroborates. Potential applications were demonstrated by electrosynthesis and late-stage functionalization of pharmaceuticals and natural amino acid modification, and three reactions were run on gram-scale in a flow-cell electrolyzer. The electrochemical C-C cross-coupling reactions proceed through an unconventional radical transmetalation mechanism. This method is highly productive and expected to find wide-spread applications in organic synthesis.

15.
Nat Mater ; 19(12): 1326-1331, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32661381

ABSTRACT

The fast penetration of electrification in rural areas calls for the development of competitive decentralized approaches. A promising solution is represented by low-cost and compact integrated solar flow batteries; however, obtaining high energy conversion performance and long device lifetime simultaneously in these systems has been challenging. Here, we use high-efficiency perovskite/silicon tandem solar cells and redox flow batteries based on robust BTMAP-Vi/NMe-TEMPO redox couples to realize a high-performance and stable solar flow battery device. Numerical analysis methods enable the rational design of both components, achieving an optimal voltage match. These efforts led to a solar-to-output electricity efficiency of 20.1% for solar flow batteries, as well as improved device lifetime, solar power conversion utilization ratio and capacity utilization rate. The conceptual design strategy presented here also suggests general future optimization approaches for integrated solar energy conversion and storage systems.

16.
Angew Chem Int Ed Engl ; 59(9): 3368-3370, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-31961466

ABSTRACT

Calcium batteries are a potentially sustainable, high-energy-density battery technology beyond Li ion batteries. Now the development of Ca batteries has become possible with a newly invented Ca electrolyte capable of reversible Ca deposition/stripping at room temperature.

17.
Biochemistry ; 58(46): 4590-4595, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31682410

ABSTRACT

Nitrogenase catalyzes the reduction of N2 to NH3, supporting all biological nitrogen fixation. Electron donors to this enzyme are ferredoxin or flavodoxin (in vivo) and sodium dithionite (in vitro). Features of these electron donors put a limit on spectrophotometric studies and electrocatalytic applications of nitrogenase. Although it is common to use methyl viologen as an electron donor for many low-potential oxidoreductases, decreased nitrogenase activity is observed with an increasing concentration of methyl viologen, limiting its utility under many circumstances. In this work, we suggest that this concentration-dependent decrease in activity can be explained by the formation of a dimer of the radical cation of methyl viologen (Me2V•+)2 at higher methyl viologen concentrations. In addition, viologens functionalized with positively and negatively charged groups were synthesized and studied using spectroscopy and cyclic voltammetry. A sulfonated viologen derivative, 1,1'-bis(3-sulfonatopropyl)-4,4'-bipyridinium radical {[(SPr)2V•]-}, was found to support full nitrogenase activity up to a mediator concentration of 3 mM, while the positively charged viologen derivative was not an efficient reductant of nitrogenase due to the high standard redox potential. The utility of [(SPr)2V•]- as an electron donor for nitrogenase was demonstrated by a simple, sensitive spectrophotometric assay for nitrogenase activity that can provide accurate values for the specific activity and turnover rate constant under argon. Under N2, the formation of ammonia was confirmed. Because of the observed full activity of nitrogenase and low overpotential, [(SPr)2V•]- should also prove to be valuable for nitrogenase electrocatalysis, including bioelectrosynthetic N2 reduction.


Subject(s)
Azotobacter vinelandii/enzymology , Nitrogenase/metabolism , Paraquat/metabolism , Azotobacter vinelandii/metabolism , Cations/chemistry , Cations/metabolism , Dimerization , Electrons , Models, Molecular , Molybdoferredoxin/metabolism , Oxidation-Reduction , Paraquat/chemistry
18.
Inorg Chem ; 58(16): 10756-10760, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31390196

ABSTRACT

Metal organic frameworks (MOFs) of the type NBu4M(DHBQ)1.5 (M = Ni2+, Fe2+, and Co2+; DHBQ = 2,5-dihydroxy-1,4-benzoquinone) were prepared with improved yield up to 100% via a simple benchtop aqueous addition reaction. For the first time, the crystalline phase of this formula polymer was synthesized without in situ generation of the DHBQ ligand from 2, 5-diamino-1,4-benzoquinone (DABQ). Powder X-ray diffraction and elemental analysis confirm the crystalline phase and composition of products. Infrared and electron dispersive spectroscopy further confirm that the materials are homologous to the reported single crystalline polymers. The present MOF synthesis can be extended to halide-substituted ligands, i.e., 3,6-dichloro-2,5-dihydroxy-1,4-benzoquinone (chloranilic acid, CAN) and 3,6-difluoro-2,5-dihydroxy-1,4-benzoquinone (fluoranilic acid, FAN).

19.
Angew Chem Int Ed Engl ; 58(46): 16629-16636, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31381221

ABSTRACT

Redox-active anthraquinone molecules represent promising anolyte materials in aqueous organic redox flow batteries (AORFBs). However, the chemical stability issue and corrosion nature of anthraquinone-based anolytes in reported acidic and alkaline AORFBs constitute a roadblock for their practical applications in energy storage. A feasible strategy to overcome these issues is migrating to pH-neutral conditions and employing soluble AQDS salts. Herein, we report the 9,10-anthraquinone-2,7-disulfonic diammonium salt AQDS(NH4 )2 , as an anolyte material for pH-neutral AORFBs with solubility of 1.9 m in water, which is more than 3 times that of the corresponding sodium salt. Paired with an NH4 I catholyte, the resulting pH-neutral AORFB with an energy density of 12.5 Wh L-1 displayed outstanding cycling stability over 300 cycles. Even at the pH-neutral condition, the AQDS(NH4 )2 /NH4 I AORFB delivered an impressive energy efficiency of 70.6 % at 60 mA cm-2 and a high power density of 91.5 mW cm-2 at 100 % SOC. The present AQDS(NH4 )2 flow battery chemistry opens a new avenue to apply anthraquinone molecules in developing low-cost and benign pH-neutral flow batteries for scalable energy storage.

20.
Nat Commun ; 10(1): 3367, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31358738

ABSTRACT

Aqueous polysulfide/iodide redox flow batteries are attractive for scalable energy storage due to their high energy density and low cost. However, their energy efficiency and power density are usually limited by poor electrochemical kinetics of the redox reactions of polysulfide/iodide ions on graphite electrodes, which has become the main obstacle for their practical applications. Here, CoS2/CoS heterojunction nanoparticles with uneven charge distribution, which are synthesized in situ on graphite felt by a one-step solvothermal process, can significantly boost electrocatalytic activities of I-/I3- and S2-/Sx2- redox reactions by improving absorptivity of charged ions and promoting charge transfer. The polysulfide/iodide flow battery with the graphene felt-CoS2/CoS heterojunction can deliver a high energy efficiency of 84.5% at a current density of 10 mA cm-2, a power density of 86.2 mW cm-2 and a stable energy efficiency retention of 96% after approximately 1000 h of continuous operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...