Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 16(4): 3280-3301, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38334964

ABSTRACT

PURPOSE: Investigating the role of lncRNAs associated with the latest cell death mode (Disulfideptosis) in renal clear cell carcinoma, as well as their correlation with tumor prognosis, immune escape, immune checkpoints, tumor mutational burden, and malignant tumor progression. Searching for potential biomarkers and targets for renal clear cell carcinoma. METHODS: Downloaded the expression profile data and clinical data of 533 cases of renal clear cell carcinoma from the TCGA database, and randomly divided them into a test set (267 cases) and a validation set (266 cases). Based on previous research, 13 genes associated with Disulfideptosis were obtained. Using R software, lncRNAs with a differential expression that is related to the prognosis of renal clear cell carcinoma and associated with Disulfideptosis were screened out. After univariate Cox regression analysis, Lasso regression analysis, and multivariate Cox regression analysis, lncRNAs with independent predictive ability were obtained. A predictive risk model was established based on the risk scores. Verification was carried out between the obtained high-risk and low-risk groups and their subgroups (including Age, Gender, tumor mutational burden (TMB), tumor grading, and staging). Subsequently, a nomogram was established, and a calibration curve was generated for verification. Performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional enrichment analyses. Downloaded the values of Tumor Immune Dysfunction and Exclusion (TIDE) for all samples and calculated the difference between the high and low-risk groups. Selected human renal tumor cell lines (786-O, OS-RC-2, A-498, ACHN) and human renal cortex proximal tubule epithelial cell line (HK-2). The RNA expression levels of the above lncRNAs in each cell line were analyzed using RT-qPCR (Real-time Quantitative PCR Detecting System). Used siRNA (small interfering RNA) to knock down FAM225B in 786-O and OS-RC-2 cell lines, and then performed in vitro cell experiments to validate the functional characteristics of FAM225B. RESULTS: Our constructed predictive model includes 5 lncRNAs with an independent predictive ability (FAM225B, ZNF503-AS1, SPINT1-AS1, WWC2-AS2, LINC01338), which can effectively distinguish between patients in high and low-risk groups and their subgroups. The 1, 3, and 5-year AUC (Area Under the ROC Curve) values of the established nomogram are 0.756, 0.752, and 0.781, respectively. The 5-year AUC value is higher compared to other clinical characteristics (Age: 0.598, Gender: 0.488, Grade: 0.680, Stage: 0.717). After the knockdown of FAM225B, the proliferation, migration, and invasion abilities of renal cancer cell lines OS-RC-2 and 786-O all decreased. CONCLUSION: We have constructed and validated a prognostic model based on Disulfideptosis-associated lncRNAs. This model can effectively predict the high or low risk of patient prognosis and can distinguish the tumor cell mutational burden and immune escape capabilities among high-risk and low-risk patients. This predictive model can serve as an independent prognostic factor for renal clear cell carcinoma, providing a new direction for personalized treatment of patients with renal clear cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Prognosis , Tumor Escape , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics
2.
Bladder (San Franc) ; 10: e21200005, 2023.
Article in English | MEDLINE | ID: mdl-37936584

ABSTRACT

Bladder cancer represents the most common malignancy of the urinary system, posing a significant threat to patients' life. Animal models and two-dimensional (2D) cell cultures, among other traditional models, have been used for years to study various aspects of bladder cancer. However, these methods are subject to various limitations when mimicking the tumor microenvironment in vivo, thus hindering the further improvement of bladder cancer treatments. Recently, three-dimensional (3D) culture models have attracted extensive attention since they overcome the shortcomings of their traditional counterparts. Most importantly, 3D culture models more accurately reproduce the tumor microenvironment in the human body because they can recapitulate the cell-cell and cell-extracellular matrix interactions. 3D culture models can thereby help us gain deeper insight into the bladder cancer. The 3D culture models of tumor cells can extend the culture duration and allow for co-culturing with different cell types. Study of patient-specific bladder cancer mutations and subtypes is made possible by the ability to preserve cells isolated from particular patients in 3D culture models. It will be feasible to develop customized treatments that target relevant signaling pathways or biomarkers. This article reviews the development, application, advantages, and limitations of traditional modeling systems and 3D culture models used in the study of bladder cancer and discusses the potential application of 3D culture models.

3.
Front Immunol ; 14: 1253586, 2023.
Article in English | MEDLINE | ID: mdl-37790935

ABSTRACT

Objectives: To identify the molecular subtypes and develop a scoring system for the tumor immune microenvironment (TIME) and prognostic features of bladder cancer (BLCA) based on the platinum-resistance-related (PRR) genes analysis while identifying P4HB as a potential therapeutic target. Methods: In this study, we analyzed gene expression data and clinical information of 594 BLCA samples. We used unsupervised clustering to identify molecular subtypes based on the expression levels of PRR genes. Functional and pathway enrichment analyses were performed to understand the biological activities of these subtypes. We also assessed the TIME and developed a prognostic signature and scoring system. Moreover, we analyzed the efficacy of immune checkpoint inhibitors. Then we conducted real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) experiments to detect the expression level of prolyl 4-hydroxylase subunit beta (P4HB) in BLCA cell lines. Transfection of small interference ribonucleic acid (siRNA) was performed in 5637 and EJ cells to knock down P4HB, and the impact of P4HB on cellular functions was evaluated through wound-healing and transwell assays. Finally, siRNA transfection of P4HB was performed in the cisplatin-resistant T24 cell to assess its impact on the sensitivity of BLCA to platinum-based chemotherapy drugs. Results: In a cohort of 594 BLCA samples (TCGA-BLCA, n=406; GSE13507, n=188), 846 PRR-associated genes were identified by intersecting BLCA expression data from TCGA and GEO databases with the PRR genes from the HGSOC-Platinum database. Univariate Cox regression analysis revealed 264 PRR genes linked to BLCA prognosis. We identified three molecular subtypes (Cluster A-C) and the PRR scoring system based on PRR genes. Cluster C exhibited a better prognosis and lower immune cell infiltration compared to the other Clusters A and B. The high PRR score group was significantly associated with an immunosuppressive tumor microenvironment, poor clinical-pathological features, and a poor prognosis. Furthermore, the high PRR group showed higher expression of immune checkpoint molecules and a poorer response to immune checkpoint inhibitors than the low PRR group. The key PRR gene P4HB was highly expressed in BLCA cell lines, and cellular functional experiments in vitro indicate that P4HB may be an important factor influencing BLCA migration and invasion. Conclusion: Our study demonstrates that the PRR signatures are significantly associated with clinical-pathological features, the TIME, and prognostic features. The key PRR gene, P4HB, s a biomarker for the individualized treatment of BLCA patients.


Subject(s)
Platinum , Urinary Bladder Neoplasms , Humans , Prognosis , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , RNA, Small Interfering , Tumor Microenvironment/genetics , Procollagen-Proline Dioxygenase , Protein Disulfide-Isomerases
4.
Front Immunol ; 14: 1169588, 2023.
Article in English | MEDLINE | ID: mdl-37404826

ABSTRACT

Background: Glycyl-tRNA synthetase 1 (GARS1) belongs to the aminoacyl-tRNA synthetase family, playing a crucial role in protein synthesis. Previous studies have reported a close association between GARS1 and various tumors. However, the role of GARS1 in human cancer prognosis and its impact on immunology remain largely unexplored. Methods: In this study, we comprehensively analyzed GARS1 expression at the mRNA and protein levels, examined genetic alterations, and assessed its prognostic implications in pan-cancer, with a specific emphasis on the immune landscape. Furthermore, we investigated the functional enrichment of genes related to GARS1 and explored its biological functions using single-cell data. Finally, we conducted cellular experiments to validate the biological significance of GARS1 in bladder cancer cells. Results: In general, GARS1 expression was significantly upregulated across multiple cancer types, and it demonstrated prognostic value in various cancers. Gene Set Enrichment Analysis (GSEA) revealed the association of GARS1 expression with multiple immune regulatory pathways. Moreover, GARS1 exhibited significant correlations with immune infiltrating cells (such as DC, CD8+T cells, Neutrophils, and Macrophages), immune checkpoint genes (CD274, CD276), and immune regulatory factors in tumors. Additionally, we observed that GARS1 could effectively predict the response to anti-PD-L1 therapy. Notably, Ifosfamide, auranofin, DMAPT, and A-1331852 emerged as potential therapeutic agents for GARS1-upregulated tumors. Our experimental findings strongly suggest that GARS1 promotes the proliferation and migration of bladder cancer cells. Conclusion: GARS1 holds promise as a potential prognostic marker and therapeutic target for pan-cancer immunotherapy, offering valuable insights for the development of more precise and personalized approaches to tumor treatment in the future.


Subject(s)
Glycine-tRNA Ligase , Urinary Bladder Neoplasms , Humans , Prognosis , Transcriptome , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Biomarkers , B7 Antigens
5.
Front Oncol ; 13: 1157384, 2023.
Article in English | MEDLINE | ID: mdl-37361597

ABSTRACT

Purpose: Machine learning prediction models based on LogisticRegression, XGBoost, GaussianNB, and LGBMClassifier for patients in the prostate-specific antigen gray zone are to be developed and compared, identifying valuable predictors. Predictive models are to be integrated into actual clinical decisions. Methods: Patient information was collected from December 01, 2014 to December 01, 2022 from the Department of Urology, The First Affiliated Hospital of Nanchang University. Patients with a pathological diagnosis of prostate hyperplasia or prostate cancer (any PCa) and having a prostate-specific antigen (PSA) level of 4-10 ng/mL before prostate puncture were included in the initial information collection. Eventually, 756 patients were selected. Age, total prostate-specific antigen (tPSA), free prostate-specific antigen (fPSA), fPSA/tPSA, prostate volume (PV), prostate-specific antigen density (PSAD), (fPSA/tPSA)/PSAD, and the prostate MRI results of these patients were recorded. After univariate and multivariate logistic analyses, statistically significant predictors were screened to build and compare machine learning models based on LogisticRegression, XGBoost, GaussianNB, and LGBMClassifier to determine more valuable predictors. Results: Machine learning prediction models based on LogisticRegression, XGBoost, GaussianNB, and LGBMClassifier exhibit higher predictive power than individual metrics. The area under the curve (AUC) (95% CI), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score of the LogisticRegression machine learning prediction model were 0.932 (0.881-0.983), 0.792, 0.824, 0.919, 0.652, 0.920, and 0.728, respectively; of the XGBoost machine learning prediction model were 0.813 (0.723-0.904), 0.771, 0.800, 0.768, 0.737, 0.793 and 0.767, respectively; of the GaussianNB machine learning prediction model were 0.902 (0.843-0.962), 0.813, 0.875, 0.819, 0.600, 0.909, and 0.712, respectively; and of the LGBMClassifier machine learning prediction model were 0.886 (0.809-0.963), 0.833, 0.882, 0.806, 0.725, 0.911, and 0.796, respectively. The LogisticRegression machine learning prediction model has the highest AUC among all prediction models, and the difference between the AUC of the LogisticRegression prediction model and those of XGBoost, GaussianNB, and LGBMClassifier is statistically significant (p < 0.001). Conclusion: Machine learning prediction models based on LogisticRegression, XGBoost, GaussianNB, and LGBMClassifier algorithms exhibit superior predictability for patients in the PSA gray area, with the LogisticRegression model yielding the best prediction. The aforementioned predictive models can be used for actual clinical decision-making.​.

6.
Sci Rep ; 13(1): 7442, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156847

ABSTRACT

There is evidence from multiple studies that dysregulation of the Eyes Absent (EYA) protein plays multiple roles in many cancers. Despite this, little is known about the prognostic significance of the EYAs family in clear cell renal cell carcinoma (ccRCC). We systematically analyzed the value of EYAs in Clear Cell Renal Cell Carcinoma. Our analysis included examining transcriptional levels, mutations, methylated modifications, co-expression, protein-protein interactions (PPIs), immune infiltration, single-cell sequencing, drug sensitivity, and prognostic values. We based our analysis on data from several databases, including the Cancer Genome Atlas database (TCGA), the Gene Expression Omnibus database (GEO), UALCAN, TIMER, Gene Expression Profiling Interactive Analysis (GEPIA), STRING, cBioPortal and GSCALite. In patients with ccRCC, the EYA1 gene was significantly highly expressed, while the expression of EYA2/3/4 genes showed the opposite trend. The level of expression of the EYA1/3/4 gene was significantly correlated with the prognosis and clinicopathological parameters of ccRCC patients. Univariate and multifactorial Cox regression analyses revealed EYA1/3 as an independent prognostic factor for ccRCC, establishing nomogram line plots with good predictive power. Meanwhile, the number of mutations in EYAs was also significantly correlated with poor overall survival (OS) and progression-free survival (PFS) of patients with ccRCC. Mechanistically, EYAs genes play an essential role in a wide range of biological processes such as DNA metabolism and double-strand break repair in ccRCC. The majority of EYAs members were related to the infiltration of immune cells, drug sensitivity, and methylation levels. Furthermore, our experiment confirmed that EYA1 gene expression was upregulated, and EYA2/3/4 showed low expression in ccRCC. The increased expression of EYA1 might play an important role in ccRCC oncogenesis, and the decreased expression of EYA3/4 could function as a tumor suppressor, suggesting EYA1/3/4 might serve as valuable prognostic markers and potential new therapeutic targets for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Eye Proteins , Kidney Neoplasms/genetics , Prognosis , Nuclear Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Intracellular Signaling Peptides and Proteins/genetics
7.
Front Oncol ; 12: 964048, 2022.
Article in English | MEDLINE | ID: mdl-36212405

ABSTRACT

Purpose: To develop and validate nomograms for pre-treatment prediction of malignant histology (MH) and unfavorable pathology (UP) in patients with endophytic renal tumors (ERTs). Methods: We retrospectively reviewed the clinical information of 3245 patients with ERTs accepted surgical treatment in our center. Eventually, 333 eligible patients were included and randomly enrolled into training and testing sets in a ratio of 7:3. We performed univariable and multivariable logistic regression analyses to determine the independent risk factors of MH and UP in the training set and developed the pathological diagnostic models of MH and UP. The optimal model was used to construct a nomogram for MH and UP. The area under the receiver operating characteristics (ROC) curves (AUC), calibration curves and decision curve analyses (DCA) were used to evaluate the predictive performance of models. Results: Overall, 172 patients with MH and 50 patients with UP were enrolled in the training set; and 74 patients with MH and 21 patients with UP were enrolled in the validation set. Sex, neutrophil-to-lymphocyte ratio (NLR), R score, N score and R.E.N.A.L. score were the independent predictors of MH; and BMI, NLR, tumor size and R score were the independent predictors of UP. Single-variable and multiple-variable models were constructed based on these independent predictors. Among these predictive models, the malignant histology-risk nomogram consisted of sex, NLR, R score and N score and the unfavorable pathology-risk nomogram consisted of BMI, NLR and R score performed an optimal predictive performance, which reflected in the highest AUC (0.842 and 0.808, respectively), the favorable calibration curves and the best clinical net benefit. In addition, if demographic characteristics and laboratory tests were excluded from the nomograms, only the components of the R.E.N.A.L. Nephrometry Score system were included to predict MH and UP, the AUC decreased to 0.781 and 0.660, respectively (P=0.001 and 0.013, respectively). Conclusion: In our study, the pathological diagnostic models for predicting malignant and aggressive histological features for patients with ERTs showed outstanding predictive performance and convenience. The use of the models can greatly assist urologists in individualizing the management of their patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...