Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(51): e202315642, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37932863

ABSTRACT

The discovery of compounds with low thermal conductivity and the understanding of their microscopic mechanisms are of great challenges and scientific significance. Herein, we report a unique ternary sulfide compound, Cu3 BiS3 , in which all Cu atoms are coordinated within a two-dimensional [CuS3 ] triangle plane. This local coordination leads to efficient out-of-plane phonon scattering and an ultralow thermal conductivity. Through DFT phonon spectrum calculations and analyses, we reveal that the lowest vibration frequency decreases from 2 THz for high-dimensional [CuS4 ] tetrahedral coordinated Cu atoms in CuBiS2 (CN=4, with an average Cu-S bond length of 2.328 Å) to 1.5 THz for low-dimensional [CuS3 ] triangular coordinated Cu atoms in Cu3 BiS3 (CN=3, with a shorter Cu-S bond length of 2.285 Å). This is due to the out-of-plane thermal vibration of the Cu atoms in the latter. Consequently,Cu3 BiS3 exhibits one of the lowest values of κlat (0.32 W/m K) among its peer, with a 36 % reduction compared to CuBiS2 (0.50 W/m K). This groundbreaking discovery highlights the significant role of 2D local coordination in reducing thermal conductivity through characteristic out-of-plane phonon scattering, while also contributing to a large Grüneisen parameter (2.06) in Cu3 BiS3 .

2.
Adv Mater ; 35(31): e2211100, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36929098

ABSTRACT

The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat-transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high-performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m-1 K-1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by "bottom-up" processes (e.g., solution-based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20-65% of the theoretical value. Here, a "top-down" strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m-1 K-1 , reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m-1 K-1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat-transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state-of-the-art commercial TCA.

4.
ACS Nano ; 16(6): 9254-9266, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35674718

ABSTRACT

The rapid increase of operation speed, transmission efficiency, and power density of miniaturized devices leads to a rising demand for electromagnetic interference (EMI) shielding and thermal management materials in the semiconductor industry. Therefore, it is essential to improve both the EMI shielding and thermal conductive properties of commonly used polyolefin components (such as polyethylene (PE)) in electronic systems. Currently, melt compounding is the most common method to fabricate polyolefin composites, but the difficulty of filler dispersion and high resistance at the filler/filler or filler/matrix interface limits their properties. Here, a fold fabrication strategy was proposed to prepare PE composites by incorporation of a well-aligned, seamless graphene framework premodified with MXene nanosheets into the matrix. We demonstrate that the physical properties of the composites can be further improved at the same filler loading by nanoscale interface engineering: the formation of hydrogen bonds at the graphene/MXene interface and the development of a seamlessly interconnected graphene framework. The obtained PE composites exhibit an EMI shielding property of ∼61.0 dB and a thermal conductivity of 9.26 W m-1 K-1 at a low filler content (∼3 wt %, including ∼0.4 wt % MXene). Moreover, other thermoplastic composites with the same results can also be produced based on our method. Our study provides an idea toward rational design of the filler interface to prepare high-performance polymer composites for use in microelectronics and microsystems.

5.
ACS Nano ; 15(8): 12922-12934, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34304570

ABSTRACT

As the power density and integration level of electronic devices increase, there are growing demands to improve the thermal conductivity of polymers for addressing the thermal management issues. On the basis of the ultrahigh intrinsic thermal conductivity, graphene has exhibited great potential as reinforcing fillers to develop polymer composites, but the resultant thermal conductivity of reported graphene-based composites is still limited. Here, an interconnected and highly ordered graphene framework (HOGF) composed of high-quality and horizontally aligned graphene sheets was developed by a porous film-templated assembly strategy, followed by a stress-induced orientation process and graphitization post-treatment. After embedding into the epoxy (EP), the HOGF/EP composite (24.7 vol %) exhibits a record-high in-plane thermal conductivity of 117 W m-1 K-1, equivalent to ≈616 times higher than that of neat epoxy. This thermal conductivity enhancement is mainly because the HOGF as a filler concurrently has high intrinsic thermal conductivity, relatively high density, and a highly ordered structure, constructing superefficient phonon transport paths in the epoxy matrix. Additionally, the use of our HOGF/EP as a heat dissipation plate was demonstrated, and it achieved 75% enhancement in practical thermal management performance compared to that of conventional alumina for cooling the high-power LED.

6.
Adv Sci (Weinh) ; 8(7): 2003734, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33854896

ABSTRACT

Graphene is usually embedded into polymer matrices for the development of thermally conductive composites, preferably forming an interconnected and anisotropic framework. Currently, the directional self-assembly of exfoliated graphene sheets is demonstrated to be the most effective way to synthesize anisotropic graphene frameworks. However, achieving a thermal conductivity enhancement (TCE) over 1500% with per 1 vol% graphene content in polymer matrices remains challenging, due to the high junction thermal resistance between the adjacent graphene sheets within the self-assembled graphene framework. Here, a multiscale structural modulation strategy for obtaining highly ordered structure of graphene framework and simultaneously reducing the junction thermal resistance is demonstrated. The resultant anisotropic framework contributes to the polymer composites with a record-high thermal conductivity of 56.8-62.4 W m-1 K-1 at the graphene loading of ≈13.3 vol%, giving an ultrahigh TCE per 1 vol% graphene over 2400%. Furthermore, thermal energy management applications of the composites as phase change materials for solar-thermal energy conversion and as thermal interface materials for electronic device cooling are demonstrated. The finding provides valuable guidance for designing high-performance thermally conductive composites and raises their possibility for practical use in thermal energy storage and thermal management of electronics.

7.
Science ; 361(6402): 582-585, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29976797

ABSTRACT

Conventional theory predicts that ultrahigh lattice thermal conductivity can only occur in crystals composed of strongly bonded light elements, and that it is limited by anharmonic three-phonon processes. We report experimental evidence that departs from these long-held criteria. We measured a local room-temperature thermal conductivity exceeding 1000 watts per meter-kelvin and an average bulk value reaching 900 watts per meter-kelvin in bulk boron arsenide (BAs) crystals, where boron and arsenic are light and heavy elements, respectively. The high values are consistent with a proposal for phonon-band engineering and can only be explained by higher-order phonon processes. These findings yield insight into the physics of heat conduction in solids and show BAs to be the only known semiconductor with ultrahigh thermal conductivity.

8.
Nat Commun ; 9(1): 1721, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712891

ABSTRACT

Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material-the combination of electrical conductivity and Seebeck coefficient-measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron-acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.

9.
Proc Natl Acad Sci U S A ; 115(5): 879-884, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29339475

ABSTRACT

Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit (zT) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.

10.
Nano Lett ; 18(1): 638-649, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29236507

ABSTRACT

In the hydrodynamic regime, phonons drift with a nonzero collective velocity under a temperature gradient, reminiscent of viscous gas and fluid flow. The study of hydrodynamic phonon transport has spanned over half a century but has been mostly limited to cryogenic temperatures (∼1 K) and more recently to low-dimensional materials. Here, we identify graphite as a three-dimensional material that supports phonon hydrodynamics at significantly higher temperatures (∼100 K) based on first-principles calculations. In particular, by solving the Boltzmann equation for phonon transport in graphite ribbons, we predict that phonon Poiseuille flow and Knudsen minimum can be experimentally observed above liquid nitrogen temperature. Further, we reveal the microscopic origin of these intriguing phenomena in terms of the dependence of the effective boundary scattering rate on momentum-conserving phonon-phonon scattering processes and the collective motion of phonons. The significant hydrodynamic nature of phonon transport in graphite is attributed to its strong intralayer sp2 hybrid bonding and weak van der Waals interlayer interactions. More intriguingly, the reflection symmetry associated with a single graphene layer is broken in graphite, which opens up more momentum-conserving phonon-phonon scattering channels and results in stronger hydrodynamic features in graphite than graphene. As a boundary-sensitive transport regime, phonon hydrodynamics opens up new possibilities for thermal management and energy conversion.

11.
Nano Lett ; 17(8): 4604-4610, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28678514

ABSTRACT

Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (Tc) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on Tc. These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced Tc reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance Tc. This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

12.
Nanoscale ; 7(24): 10648-54, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26024364

ABSTRACT

As an intrinsic thermally anisotropic material, the thermal properties of phosphorene must vary with respect to the crystal chirality. Nevertheless, previous studies of heat transfer in phosphorene have been limited to the 0.0° (zigzag, ZZ) and 90.0° (armchair, AC) chiralities. In this study, we investigate the orientation-dependent thermal transport in phosphorene sheets with a complete set of crystal chirality ranging from 0.0° to 90.0° using the Boltzmann transport equation (BTE) associated with the first-principles calculations. It was found that in the phosphorene sheets, the intrinsic thermal conductivity is a smooth monotonic decreasing function of the crystal chirality, which exhibits sinusoidal behavior bounded by the two terminated values 48.9 (0.0°) and 27.8 (90.0°) W m(-1) K(-1). The optical modes have unusually large contributions to heat transfer, which account for almost 30% of the total thermal conductivity of phosphorene sheets. This is because the optical phonons have comparable group velocities and relaxation times to the acoustic phonons.

SELECTION OF CITATIONS
SEARCH DETAIL
...