Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
RSC Adv ; 14(17): 12142-12146, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38628470

ABSTRACT

MOF-808, owing to the synergistic effect of its large surface area and surface charge matching, showed a diclofenac sodium (DCF) removal capacity as high as 630 mg g-1, and the ability to adsorb 436 mg g-1 DCF in two hours, outperforming many common Zr-MOFs under the same conditions. Importantly, a series of free-standing mixed-matrix membranes made by combining polyacrylonitrile with MOF-808 were fabricated and exhibited high efficiency of removing DCF from water via an easily accessible filtration method.

2.
Angew Chem Int Ed Engl ; : e202400160, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38523066

ABSTRACT

Achieving active site engineering at the atomic level poses a significant challenge in the design and optimization of catalysts for energy-efficient catalytic processes, especially for a reaction with two reactants competitively absorbed on catalytic active sites. Herein, we show an example that tailoring the local environment of cobalt sites in a robust metal-organic framework through substituting the bridging atom from -Cl to -OH group leads to a highly active catalyst for oxygen activation in an oxidation reaction. Comprehensive characterizations reveal that this variation imparts drastic changes on the electronic structure of metal centers, the competitive reactant adsorption behavior, and the intermediate formation. As a result, exceptional low-temperature CO oxidation performance was achieved with T25(Temperature for 25 % conversion)=35 °C and T100 (Temperature for 100 % conversion)=150 °C, which stands out from existing MOF-based catalysts and even rivals many noble metal catalysts. This work provides a guidance for the rational design of catalysts for efficient oxygen activation for an oxidation reaction.

3.
Nat Commun ; 15(1): 634, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245504

ABSTRACT

Hydrogen-Bonded organic frameworks (HOFs) are a type of emerging porous materials. At present, little research has been conducted on their solution state. This work demonstrates that HOFs fragment into small particles while maintaining their original assemblies upon dispersing in solvents, as confirmed by Cryo-electron microscopy coupled with 3D electron diffraction technology. 1D and 2D-Nuclear Magnetic Resonance (NMR) and zeta potential analyses indicate the HOF-based colloid solution and the isolated molecular solution have significant differences in intermolecular interactions and aggregation behavior. Such unique solution processibility allows for fabricating diverse continuous HOF membranes with high crystallinity and porosity through solution-casting approach on various substrates. Among them, HOF-BTB@AAO membranes show high C3H6 permeance (1.979 × 10-7 mol·s-1·m-2·Pa-1) and excellent separation performance toward C3H6 and C3H8 (SF = 14). This continuous membrane presents a green, low-cost, and efficient separation technology with potential applications in petroleum cracking and purification.

4.
J Am Chem Soc ; 146(1): 289-297, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38135454

ABSTRACT

Copper (Cu), with the advantage of producing a deep reduction product, is a unique catalyst for the electrochemical reduction of CO2 (CO2RR). Designing a Cu-based catalyst to trigger CO2RR to a multicarbon product and understanding the accurate structure-activity relationship for elucidating reaction mechanisms still remain a challenge. Herein, we demonstrate a rational design of a core-shell structured silica-copper catalyst (p-Cu@m-SiO2) through Cu-Si direct bonding for efficient and selective CO2RR. The Cu-Si interface fulfills the inversion in CO2RR product selectivity. The product ratio of C2H4/CH4 changes from 0.6 to 14.4 after silica modification, and the current density reaches a high of up to 450 mA cm-2. The kinetic isotopic effect, in situ attenuated total reflection Fourier-transform infrared spectra, and density functional theory were applied to elucidate the reaction mechanism. The SiO2 shell stabilizes the *H intermediate by forming Si-O-H and inhibits the hydrogen evolution reaction effectively. Moreover, the direct-bonded Cu-Si interface makes bare Cu sites with larger charge density. Such bare Cu sites and Si-O-H sites stabilized the *CHO and activated the *CO, promoting the coupling of *CHO and *CO intermediates to form C2H4. This work provides a promising strategy for designing Cu-based catalysts with high C2H4 catalytic activity.

5.
Biomed Pharmacother ; 165: 115186, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481933

ABSTRACT

Angiogenesis has been considered a pivotal strategy for treating ischemic heart disease. One possible approach, the Shexiang Baoxin Pill (MUSKARDIA), has been noted to promote angiogenesis, but its underlying mechanism is still largely unknown. We aimed to determine the effects of MUSKARDIA on acute myocardial infarction (AMI), as well as the underlying mechanistic bases. AMI was induced in rats, using left anterior descending coronary arterial occlusion, and either 6 (low) or 12 (high-dose) mg/kg/day of MUSKARDIA was administered for 56 days. We found that MUSKARDIA improved cardiac function and counteracted against adverse remodeling among AMI rats, which most likely is due to it promoting angiogenesis. Transcriptome analysis by RNA-sequencing found that MUSKARDIA up-regulated cardiac pro-angiogenic genes, particularly growth differentiation factor 15 (GDF15), which was confirmed by RT-qPCR. This up-regulation was also correlated with elevated serum GDF15 levels. In vitro analyses with human umbilical vein endothelial cells found that increased GDF15, stimulated by MUSKARDIA, resulted in enhanced cell migration, proliferation, and tubular formation, all of which were reversed after GDF15 knockdown using a lentiviral vector. Gene Ontology, as well as Kyoto Genes and Genomes enrichment analyses identified calcium signaling pathway as a major contributor to these outcomes, which was verified by Western blot and Cal-590 AM loading showing that transient receptor potential cation channel subfamily V member 4 protein (TRPV4) and intracellular Ca2+ levels increased in accordance with MUSKARDIA-induced GDF15 up-regulation, and decreased with GDF15 knock-down. Therefore, MUSKARDIA may exert its cardioprotective effects via stimulating the GDF15/TRPV4/calcium signaling/angiogenesis axis.


Subject(s)
Growth Differentiation Factor 15 , Myocardial Infarction , Rats , Humans , Animals , Growth Differentiation Factor 15/genetics , TRPV Cation Channels , Myocardial Infarction/drug therapy , Human Umbilical Vein Endothelial Cells
6.
Nat Commun ; 14(1): 3317, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286561

ABSTRACT

Porous liquids are fluids with the permanent porosity, which can overcome the poor gas solubility limitations of conventional porous solid materials for three phase gas-liquid-solid reactions. However, preparation of porous liquids still requires the complicated and tedious use of porous hosts and bulky liquids. Herein, we develop a facile method to produce a porous metal-organic cage (MOC) liquid (Im-PL-Cage) by self-assembly of long polyethylene glycol (PEG)-imidazolium chain functional linkers, calixarene molecules and Zn ions. The Im-PL-Cage in neat liquid has permanent porosity and fluidity, endowing it with a high capacity of CO2 adsorption. Thus, the CO2 stored in an Im-PL-Cage can be efficiently converted to the value-added formylation product in the atmosphere, which far exceeds the porous MOC solid and nonporous PEG-imidazolium counterparts. This work offers a new method to prepare neat porous liquids for catalytic transformation of adsorbed gas molecules.

7.
J Am Chem Soc ; 145(14): 8261-8270, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36976930

ABSTRACT

The photocatalytic conversion of CO2 into C2+ products such as ethylene is a promising path toward the carbon neutral goal but remains a big challenge due to the high activation barrier for CO2 and similar reduction potentials of many possible multi-electron-transfer products. Herein, an effective tandem photocatalysis strategy has been developed to support conversion of CO2 to ethylene by construction of the synergistic dual sites in rhenium-(I) bipyridine fac-[ReI(bpy)(CO)3Cl] (Re-bpy) and copper-porphyrinic triazine framework [PTF(Cu)]. With these two catalysts, a large amount of ethylene can be produced at a rate of 73.2 µmol g-1 h-1 under visible light irradiation. However, ethylene cannot be obtained from CO2 by use of either component of the Re-bpy or PTF(Cu) catalysts alone; with a single catalyst, only monocarbon product CO is produced under similar conditions. In the tandem photocatalytic system, the CO generated at the Re-bpy sites is adsorbed by the nearby Cu single sites in PTF(Cu), and this is followed by a synergistic C-C coupling process which ultimately produces ethylene. Density functional theory calculations demonstrate that the coupling process between PTF(Cu)-*CO and Re-bpy-*CO to form the key intermediate Re-bpy-*CO-*CO-PTF(Cu) is vital to the C2H4 production. This work provides a new pathway for the design of efficient photocatalysts for photoconversion of CO2 to C2 products via a tandem process driven by visible light under mild conditions.

8.
J Am Chem Soc ; 144(21): 9254-9263, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35535584

ABSTRACT

Promoting the oxygen evolution reaction (OER) with saline water is highly desired to realize seawater splitting. This requires OER catalysts to resist serious corrosion and undesirable chloride oxidation. We introduce a 5d transition metal, Ir, to develop a monolayer NiIr-layered double hydroxide (NiIr-LDH) as the catalyst with enhanced OER performance for seawater splitting. The NiIr-LDH catalyst delivers 500 mA/cm2 at only 361 mV overpotential with ∼99% O2 Faradaic efficiency in alkaline seawater, which is more active than commercial IrO2 (763 mV, 23%) and the best known OER catalyst NiFe-LDH (530 mV, 92%). Moreover, it shows negligible activity loss at up to 650 h chronopotentiometry measurements at an industrial level (500 mA/cm2), while commercial IrO2 and NiFe-LDH rapidly deactivated within 0.2 and 10 h, respectively. The incorporation of Ir into the Ni(OH)2 layer greatly altered the electron density of Ir and Ni sites, which was revealed by X-ray absorption fine structure and density functional theory (DFT) calculations. Coupling the electrochemical measurements and in situ Raman spectrum with DFT calculations, we further confirm that the generation of rate-limiting intermediate *O and *OOH species was accelerated on Ni and Ir sites, respectively, which is responsible for the high seawater splitting performance. Our results also provide an opportunity to fabricate LDH materials containing 5d metals for applications beyond seawater splitting.

9.
Nat Commun ; 13(1): 2721, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581214

ABSTRACT

The pursuit of selective two-electron oxygen reduction reaction to H2O2 in acids is demanding and largely hampered by the lack of efficient non-precious-metal-based electrocatalysts. Metal macrocycles hold promise, but have been relatively underexplored. Efforts are called for to promote their inherent catalytic activities and/or increase the surface exposure of active sites. In this contribution, we perform the high-throughput computational screening of thirty-two different metalloporphyrins by comparing their adsorption free energies towards key reaction intermediates. Cobalt porphyrin is revealed to be the optimal candidate with a theoretical overpotential as small as 40 mV. Guided by the computational predictions, we prepare hydrogen-bonded cobaltoporphyrin frameworks in order to promote the solution accessibility of catalytically active sites for H2O2 production in acids. The product features an onset potential at ~0.68 V, H2O2 selectivity of >90%, turnover frequency of 10.9 s-1 at 0.55 V and stability of ~30 h, the combination of which clearly renders it stand out from existing competitors for this challenging reaction.

11.
Angew Chem Int Ed Engl ; 61(27): e202202089, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35460153

ABSTRACT

Rational synthesis of hydrogen-bonded organic frameworks (HOFs) with predicted structure has been a long-term challenge. Herein, by using the efficient, simple, low-cost, and scalable mechanosynthesis, we demonstrate that reticular chemistry is applicable to HOF assemblies based on building blocks with different geometry, connectivity, and functionality. The obtained crystalline HOFs show uniform nano-sized morphology, which is challenging or unachievable for conventional solution-based methods. Furthermore, the one-pot mechanosynthesis generated a series of Pd@HOF composites with noticeably different CO oxidation activities. In situ DRIFTS studies indicate that the most efficient composite, counterintuitively, shows the weakest CO affinity to Pd sites while the strongest CO affinity to HOF matrix, revealing the vital role of porous matrix to the catalytic performance. This work paves a new avenue for rational synthesis of HOF and HOF-based composites for broad application potential.

12.
Angew Chem Int Ed Engl ; 61(28): e202203955, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35441462

ABSTRACT

In natural photosynthesis, the architecture of multiproteins integrates more chromophores than redox centers and simultaneously creates a well-controlled environment around the active site. Herein, we demonstrate that these features can be emulated in a prototype hydrogen-bonded organic framework (HOF) through simply varying the proportion of metalated porphyrin in the structure. Further studies demonstrate that changing the metalloporphyrin content not only realizes a fine tuning of the photosensitizer/catalyst ratio, but also alters the microenvironment surrounding the active site and the charge separation efficiency. As a result, the obtained material achieves the challenging overall CO2 reduction with a high HCOOH production rate (29.8 µmol g-1 h-1 , scavenger free), standing out from existing competitors. This work unveils that the degree of metalation is vital to the catalytic activity of the porphryinic framework, presenting as a new strategy to optimize the performance of heterogeneous catalysts.

13.
ACS Appl Mater Interfaces ; 14(18): 21050-21058, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35476406

ABSTRACT

Photocatalytic CO2 reduction is one of the most cost-effective and environmentally friendly techniques of converting CO2 into high-value compounds and/or fuels. However, the performance of most current photocatalytic CO2 reduction catalysts is less than satisfactory for practical applications. Here, we synthesized a heterogeneous structure by integrating Cu2O and a porphyrin hydrogen-bonded organic framework (PFC-45), which was then fabricated into a thin-film catalyst on carbolic paper (CP) using a facile electrophoretic deposition technology. With improved electron-hole separation efficiency and visible-light-harvesting ability, this film (PFC-45/Cu2O@CP) significantly enhanced CO2-to-CO photoreduction, exceeding 2.4 and 3.2 times that of PFC-45@CP and PFC-45/Cu2O particles, respectively. Remarkably, PFC-45/Cu2O@CP also exhibited high selectivity (99%) and outstanding activity (11.81 µmol g-1 h-1) for photocatalytic CO2 reduction in pure water without any sacrificial agent. This work demonstrates a new strategy to design photocatalysts for efficient CO2 reduction.

14.
World J Clin Cases ; 10(6): 1998-2006, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35317165

ABSTRACT

BACKGROUND: Mutations that occur in the ABCB4 gene, which encodes multidrug-resistant protein 3, underlie the occurrence of progressive familial intrahepatic cholestasis type 3 (PFIC3). Clinical signs of intrahepatic cholestasis due to gene mutations typically first appear during infancy or childhood. Reports of PFIC3 occurring in adults are rare. CASE SUMMARY: This is a case study of a 32-year-old infertile female Chinese patient with a 15-year history of recurrent abnormal liver function. Her primary clinical signs were elevated levels of alkaline phosphatase and γ-glutamyl transpeptidase. Other possible reasons for liver dysfunction were eliminated in this patient, resulting in a diagnosis of PFIC3. The diagnosis was confirmed using gene detection and histological analyses. Assessments using genetic sequencing analysis indicated the presence of two novel heterozygous mutations in the ABCB4 gene, namely, a 2950C>T; p.A984V mutation (exon 24) and a 667A>G; p.I223V mutation (exon 7). After receiving ursodeoxycholic acid (UDCA) treatment, the patient's liver function indices improved, and she successfully became pregnant by in vitro fertilization. However, the patient developed intrahepatic cholestasis of pregnancy in the first trimester. Fortunately, treatment with UDCA was safe and effective. CONCLUSION: These novel ABCB4 heterozygous mutations have a variety of clinical phenotypes. Continued follow-up is essential for a comprehensive understanding of PFIC3.

15.
Small ; 18(16): e2200407, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35266311

ABSTRACT

Previous studies on syntheses of metal-organic frameworks (MOFs) for photocatalytic CO2 reduction are mainly focused on the exquisite control over the net topology and the functionality of metal clusters/organic building blocks. This contribution demonstrates that the rational design of MOF-based photocatalyst can be further extended to the hierarchical structure at micrometer scales well beyond the conventional MOF design at the molecular level. By taking advantage of the disparity of two selective MOFs in nucleation kinetics, a hierarchical core-shell MOF@MOF structure is successfully constructed through a simple one-pot synthesis. Besides inheriting the high porosity, crystallinity, and robustness of parent MOFs, the obtained heterojunction exhibits extended photoresponse, optimized band alignment with large overpotential, and greatly enhanced photogenerated charge separation, which would be hardly realized by the merely molecular-level assembly. As a result, the challenging overall CO2 photoreduction is achieved, which generates a record high HCOOH production (146.0 µmol/g/h) without using any sacrificial reagents. Moreover, the core-shell structure exhibits a more effective use of photogenerated electrons than the individual MOFs. This work shows that harnessing the hierarchical architecture of MOFs present a new and effective alternative to tuning the photocatalytic performance at a mesoscopic level.

16.
ACS Cent Sci ; 8(12): 1589-1608, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36589879

ABSTRACT

Hydrogen-bonded organic frameworks (HOFs), self-assembled from organic or metalated organic building blocks (also termed as tectons) by hydrogen bonding, π-π stacking, and other intermolecular interactions, have become an emerging class of multifunctional porous materials. So far, a library of HOFs with high porosity has been synthesized based on versatile tectons and supramolecular synthons. Benefiting from the flexibility and reversibility of H-bonds, HOFs feature high structural flexibility, mild synthetic reaction, excellent solution processability, facile healing, easy regeneration, and good recyclability. However, the flexible and reversible nature of H-bonds makes most HOFs suffer from poor structural designability and low framework stability. In this Outlook, we first describe the development and structural features of HOFs and summarize the design principles of HOFs and strategies to enhance their stability. Second, we highlight the state-of-the-art development of HOFs for diverse applications, including gas storage and separation, heterogeneous catalysis, biological applications, sensing, proton conduction, and other applications. Finally, current challenges and future perspectives are discussed.

17.
Angew Chem Int Ed Engl ; 61(6): e202115854, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34877789

ABSTRACT

Under topological guidance, the self-assembly process based on a tetratopic porphyrin synthon results in a hydrogen-bonded organic framework (HOF) with the predicted square layers topology (sql) but unsatisfied stability. Strikingly, simply introducing a transition metal in the porphyrin center does not change the network topology but drastically causes noticeable change on noncovalent interaction, orbital overlap, and molecular geometry, therefore ultimately giving rise to a series of metalloporphyrinic HOFs with high surface area, and excellent stability (intact after being soaked in boiling water, concentrated HCl, and heated to 270 °C). On integrating both photosensitizers and catalytic sites into robust backbones, this series of HOFs can effectively catalyze the photoreduction of CO2 to CO, and their catalytic performances greatly depend on the chelated metal species in the porphyrin centers. This work enriches the library of stable functional HOFs and expands their applications in photocatalytic CO2 reduction.

18.
Research (Wash D C) ; 2021: 9874273, 2021.
Article in English | MEDLINE | ID: mdl-34778792

ABSTRACT

The poor electrical conductivity of metal-organic frameworks (MOFs) has been a stumbling block for its applications in many important fields. Therefore, exploring a simple and effective strategy to regulate the conductivity of MOFs is highly desired. Herein, anionic guest molecules are incorporated inside the pores of a cationic MOF (PFC-8), which increases its conductivity by five orders of magnitude while maintaining the original porosity. In contrast, the same operation in an isoreticular neutral framework (PFC-9) does not bring such a significant change. Theoretical studies reveal that the guest molecules, stabilized inside pores through electrostatic interaction, play the role of electron donors as do in semiconductors, bringing in an analogous n-type semiconductor mechanism for electron conduction. Therefore, we demonstrate that harnessing electrostatic interaction provides a new way to regulate the conductivity of MOFs without necessarily altering the original porous structure. This strategy would greatly broaden MOFs' application potential in electronic and optoelectronic technologies.

19.
Dalton Trans ; 50(47): 17499-17505, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34812820

ABSTRACT

The construction of heterostructures is a universal method to hinder the radiative recombination of hot electrons and hot holes, which can effectively enhance the photothermal effect of semiconductors. In this work, a one-pot method was employed to prepare a composite named Bi2Se3@ZIF-8 NPs, which incredibly increased the photothermal conversion efficiency of Bi2Se3 NPs. The temperature elevation of Bi2Se3@ZIF-8 NPs was almost double that of the Bi2Se3 NPs; specifically, the temperature of the irradiated Bi2Se3@ZIF-8 NPs was strikingly increased to 130 °C within 6 seconds, and finally stabilized at 165 °C. Furthermore, the photothermal conversion ability was maintained over multiple irradiation cycles, which endows this composite with great potential to be an excellent photothermal agent.

20.
Angew Chem Int Ed Engl ; 60(49): 25701-25707, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34477299

ABSTRACT

Exploration of effective ways to integrate various functional species into hydrogen-bonded organic frameworks (HOFs) is critically important for their applications but highly challenging. In this study, according to the "bottle-around-ship" strategy, core-shell heterostructure of upconversion nanoparticles (UCNPs) and HOFs was fabricated for the first time via a ligand-grafting stepwise method. The UCNPs "core" can effectively upconvert near-infrared (NIR) irradiation (980 nm) into visible light (540 nm and 653 nm), which further excites the perylenediimide-based HOF "shell" through resonance energy transfer. In this way, the nanocomposite inherits the high porosity, excellent photothermal and photodynamic efficiency, NIR photoresponse from two parent materials, achieving intriguing NIR-responsive bacterial inhibition toward Escherichia coli. This study may shed light on the design of functional HOF-based composite materials, not only enriching the HOF library but also broadening the horizon of their potential applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Imides/pharmacology , Nanostructures/chemistry , Perylene/analogs & derivatives , Photosensitizing Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Hydrogen Bonding , Imides/chemical synthesis , Imides/chemistry , Infrared Rays , Microbial Sensitivity Tests , Particle Size , Perylene/chemical synthesis , Perylene/chemistry , Perylene/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...