Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Jan 22.
Article in English | MEDLINE | ID: mdl-38251723

ABSTRACT

Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Saccharomyces cerevisiae Proteins , Humans , Chromatin , Cryptococcus neoformans/genetics , Saccharomyces cerevisiae/genetics , Acetylation , Imitative Behavior , Adenosine Triphosphatases/metabolism , Ubiquitination , Drug Resistance, Multiple , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
J Fungi (Basel) ; 9(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37504688

ABSTRACT

F-box protein is a key protein of the SCF E3 ubiquitin ligase complex, responsible for substrate recognition and degradation through specific interactions. Previous studies have shown that F-box proteins play crucial roles in Cryptococcus sexual reproduction. However, the molecular mechanism by which F-box proteins regulate sexual reproduction in C. neoformans is unclear. In the study, we discovered the AICAR transformylase/IMP cyclohydrolase Ade16 as a substrate of Fbp1. Through protein interaction and stability experiments, we demonstrated that Ade16 is a substrate for Fbp1. To examine the role of ADE16 in C. neoformans, we constructed the iADE16 strains and ADE16OE strains to analyze the function of Ade16. Our results revealed that the iADE16 strains had a smaller capsule and showed growth defects under NaCl, while the ADE16OE strains were sensitive to SDS but not to Congo red, which is consistent with the stress phenotype of the fbp1Δ strains, indicating that the intracellular protein expression level after ADE16 overexpression was similar to that after FBP1 deletion. Interestingly, although iADE16 strains can produce basidiospores normally, ADE16OE strains can produce mating mycelia but not basidiospores after mating, which is consistent with the fbp1Δmutant strains, suggesting that Fbp1 is likely to regulate the sexual reproduction of C. neoformans through the modulation of Ade16. A fungal nuclei development assay showed that the nuclei of the ADE16OE strains failed to fuse in the bilateral mating, indicating that Ade16 plays a crucial role in the regulation of meiosis during mating. In summary, our findings have revealed a new determinant factor involved in fungal development related to the post-translational regulation of AICAR transformylase/IMP cyclohydrolase.

3.
Adv Drug Deliv Rev ; 199: 114967, 2023 08.
Article in English | MEDLINE | ID: mdl-37336246

ABSTRACT

In patients with compromised immunity, invasive fungal infections represent a significant cause of mortality. Given the limited availability and drawbacks of existing first-line antifungal drugs, there is a growing interest in exploring novel targets that could facilitate the development of new antifungal agents or enhance the effectiveness of conventional ones. While previous studies have extensively summarized new antifungal targets inherent in fungi for drug development purposes, the exploration of potential targets for novel antifungal drug delivery strategies has received less attention. In this review, we provide an overview of recent advancements in new antifungal drug delivery strategies that leverage novel targets, including those located in the physio-pathological barrier at the site of infection, the infection microenvironment, fungal-host interactions, and the fungal pathogen itself. The objective is to enhance therapeutic efficacy and mitigate toxic effects in fungal infections, particularly in challenging cases such as refractory, recurrent, and drug-resistant invasive fungal infections. We also discuss the current challenges and future prospects associated with target-driven antifungal drug delivery strategies, offering important insights into the clinical implementation of these innovative approaches.


Subject(s)
Invasive Fungal Infections , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/microbiology , Drug Delivery Systems
4.
Nat Commun ; 13(1): 6397, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302775

ABSTRACT

Fungal pathogens often undergo morphological switches, including cell size changes, to adapt to the host environment and cause disease. The pathogenic yeast Cryptococcus neoformans forms so-called 'titan cells' during infection. Titan cells are large, polyploid, display alterations in cell wall and capsule, and are more resistant to phagocytosis and various types of stress. Titan cell formation is regulated by the cAMP/PKA signal pathway, which is stimulated by the protein Gpa1. Here, we show that Gpa1 is activated through phosphorylation by a CDK-related kinase (Crk1), which is targeted for degradation by an E3 ubiquitin ligase (Fbp1). Strains overexpressing CRK1 or an allele lacking a PEST domain exhibit increased production of titan cells similarly to the fbp1∆ mutant. Conversely, CRK1 deletion results in reduced titan cell production, indicating that Crk1 stimulates titan cell formation. Crk1 phosphorylates Gpa1, which then localizes to the plasma membrane and activates the cAMP/PKA signal pathway to induce cell enlargement. Furthermore, titan cell-overproducing strains trigger increased Th1 and Th17 cytokine production in CD4+ T cells and show attenuated virulence in a mouse model of systemic cryptococcosis. Overall, our study provides insights into the regulation of titan cell formation and fungal virulence.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Mice , Animals , Virulence , Ubiquitin/metabolism , Proteolysis , Phosphorylation , Cryptococcosis/microbiology , Saccharomyces cerevisiae/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
5.
Nat Cell Biol ; 24(7): 1029-1037, 2022 07.
Article in English | MEDLINE | ID: mdl-35711061

ABSTRACT

Carbon dioxide not only plays a central role in the carbon cycle, but also acts as a crucial signal in living cells. Adaptation to changing CO2 concentrations is critical for all organisms. Conversion of CO2 to HCO3- by carbonic anhydrase and subsequent HCO3--triggered signalling are thought to be important for cellular responses to CO2 (refs. 1-3). However, carbonic anhydrases are suggested to transduce a change in CO2 rather than be a direct CO2 sensor4,5, the mechanism(s) by which organisms sense CO2 remain unknown. Here we demonstrate that a unique group of PP2C phosphatases from fungi and plants senses CO2, but not HCO3-, to control diverse cellular programmes. Different from other phosphatases, these PP2Cs all have an intrinsically disordered region (IDR). They formed reversible liquid-like droplets through phase separation both in cells and in vitro, and were activated in response to elevated environmental CO2 in an IDR-dependent manner. The IDRs in PP2Cs are characterized by a sequence of polar amino acids enriched in serine/threonine, which provides CO2 responsiveness. CO2-responsive activation of PP2Cs via the serine/threonine-rich IDR-mediated phase separation represents a direct CO2 sensing mechanism and is widely exploited.


Subject(s)
Carbon Dioxide , Carbonic Anhydrases , Carbon Dioxide/metabolism , Carbonic Anhydrases/metabolism , Phosphoric Monoester Hydrolases , Serine , Threonine
6.
J Fungi (Basel) ; 7(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072011

ABSTRACT

Cryptococcus neoformans is an encapsulated yeast pathogen that infects immunocompromised patients to cause fungal meningitis, resulting in hundreds of thousands of deaths each year. F-box protein Fbp1, the key component of the E3 ubiquitin ligase, plays a critical role in fungal development and virulence in fungal pathogens. In this study, we identified a potential substrate of Fbp1, the vacuolar morphogenesis protein Vam6-like protein Vlp1, and evaluated its role in virulence in C. neoformans. Deletion or overexpression of the VLP1 gene results in abnormal capsule formation and melanin production of C. neoformans. Stress tolerance assay showed that the vlp1Δ mutant was sensitive to SDS and NaCl but not to CFW or Congo red, indicating that Vlp1 might regulate the cell membrane integrity in C. neoformans. Fungal virulence assay showed that Vlp1 was essential for the pathogenicity of C. neoformans, as vlp1Δ mutants are avirulent in the mouse systematic infection model of cryptococcosis. The progression of fungal infection revealed that the vlp1Δ mutants were gradually eliminated from the lungs of the mice after infection. Moreover, the vlp1Δ mutants showed a proliferation defect inside macrophages and a viability defect in the host complement system, which likely contributes to the virulence attenuation of the vlp1Δ mutants. In summary, our results revealed that the vacuolar morphogenesis protein Vam6-like protein Vlp1 is essential for the pathogenicity of C. neoformans.

7.
Cardiol Res Pract ; 2021: 8841736, 2021.
Article in English | MEDLINE | ID: mdl-33489357

ABSTRACT

INTRODUCTION: The relationship between ventricular pre-excitation and left ventricular dysfunction has been described in the absence of sustained supraventricular tachycardia in a series of case reports. However, there have been no systematic studies about the effect of ventricular pre-excitation on cardiac function in adult patients with different accessory pathway locations. METHODS AND RESULTS: Patients were divided into four groups based on the type and location of their accessory pathway: septal, right free wall, left free wall, and concealed. N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, electrocardiogram recordings, electrophysiological properties, and transthoracic echocardiographic data (septal-to-posterior wall motion delay (SPWMD) and interventricular mechanical delay (IVMD) indicating intraventricular and interventricular dyssynchrony) were compared before and after successful ablation. Before radiofrequency catheter ablation, left ventricular ejection fraction (LVEF) was significantly lower in patients with septal and right free wall accessory pathways. Within three months after radiofrequency catheter ablation, NT-proBNP levels decreased, left ventricular function improved, and intraventricular left ventricular dyssynchrony disappeared. There was a negative correlation between initial LVEF with initial QRS duration and initial SPWMD. Notably, SPWMD had a stronger correlation with LVEF than initial QRS duration. CONCLUSIONS: Anterograde conduction with a septal or right free wall accessory pathway may cause left ventricular dyssynchrony and impair left ventricular function. Intraventricular left ventricular dyssynchrony seems to be responsible for the pathogenesis of left ventricular dysfunction. Radiofrequency catheter ablation results in decreased NT-proBNP levels, normalized QRS duration, mechanical resynchronization, and improved left ventricular function.

8.
J Interv Card Electrophysiol ; 62(1): 31-38, 2021 Oct.
Article in English | MEDLINE | ID: mdl-32939702

ABSTRACT

PURPOSE: To clarify the electrophysiological mechanism of supra-ventricular tachycardias (SVT) with concealed nodo-ventricular (NV) fibers. METHODS: We studied the intra-cardiac electrograms during electrophysiological study (EPS) of three cases of SVT which concerned concealed NV fibers. Electrophysiological maneuvers including right ventricular apex entrainments, RS2 stimuli, adenosine triphosphate injection and so on were done for differential diagnosis before ablation. RESULTS: Among these patients, one had atrio-ventricular nodal reentrant tachycardia (AVNRT) with a bystander NV fiber; the other 2 had NV fiber mediated orthodromic reentrant tachycardias (NVRT). VA dissociation was observed during SVT in all 3 cases with an antegrade His bundle conduction sequence. Ventricular stimulation at His refractory period reset the H-H intervals and the V-V intervals sequentially, suggesting the existence of a retrogradely conductive accessory pathway. Adenosine injection could terminate these tachycardias. The cycle length of an NVRT prolonged during the status of functional right bundle branch block, suggesting that the fiber located on the right side. Multiple QRS fusion morphologies during ventricular entrainments or ventricular stimulation at His refractory period at a fixed position could be observed in these cases. CONCLUSIONS: Concealed NV fibers can either mediate orthodromic reentrant tachycardia or be a bystander of AVNRT. V-A dissociation usually occur during such SVTs. Dissociation of H and V due to entrainment of right ventricular apex is a newly discovered maneuver to differentiate AVNRT from NVRT.


Subject(s)
Tachycardia, Atrioventricular Nodal Reentry , Tachycardia, Supraventricular , Tachycardia, Ventricular , Atrioventricular Node , Electrocardiography , Humans , Tachycardia, Supraventricular/diagnosis , Tachycardia, Ventricular/diagnosis
9.
Front Cell Infect Microbiol ; 11: 794661, 2021.
Article in English | MEDLINE | ID: mdl-35024357

ABSTRACT

The ubiquitin-proteasome system (UPS) is the major protein turnover mechanism that plays an important role in regulating various cellular functions. F-box proteins are the key proteins of the UPS, responsible for the specific recognition and ubiquitination of downstream targets. Our previous studies showed that the F-box protein Fbp1 plays an essential role in the virulence of C. neoformans. However, the molecular mechanism of Fbp1 regulating the virulence of C. neoformans is still unclear. In this study, we analyzed the potential Fbp1 substrates using an iTRAQ-based proteomic approach and identified the zinc-binding protein Zbp1 as a substrate of Fbp1. Protein interaction and stability assays showed that Zbp1 interacts with Fbp1 and is a downstream target of Fbp1. Ubiquitination analysis in vivo showed that the ubiquitination of Zbp1 is dependent on Fbp1 in C. neoformans. Subcellular localization analysis revealed that the Zbp1 protein was localized in the nucleus of C. neoformans cells. In addition, both deletion and overexpression of the ZBP1 gene led to the reduced capsule size, while overexpression has a more significant impact on capsule size reduction. Fungal virulence assays showed that although the zbp1Δ mutants are virulent, virulence was significantly attenuated in the ZBP1 overexpression strains. Fungal load assay showed that the fungal burdens recovered from the mouse lungs decreased gradually after infection, while no yeast cells were recovered from the brains and spleens of the mice infected by ZBP1 overexpression strains. Thus, our results revealed a new determinant of fungal virulence involving the post-translational regulation of a zinc-binding protein.


Subject(s)
Cryptococcus neoformans , F-Box Proteins , Fungal Proteins , Animals , Carrier Proteins , Cryptococcus neoformans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mice , Proteomics , RNA-Binding Proteins , Virulence
10.
Front Cell Infect Microbiol ; 11: 806465, 2021.
Article in English | MEDLINE | ID: mdl-35087766

ABSTRACT

Cryptococcus neoformans is an opportunistic yeast-like pathogen that mainly infects immunocompromised individuals and causes fatal meningitis. Sexual reproduction can promote the exchange of genetic material between different strains of C. neoformans, which is one of the reasons leading to the emergence of highly pathogenic and drug-resistant strains of C. neoformans. Although much research has been done on the regulation mechanism of Cryptococcus sexual reproduction, there are few studies on the sexual reproduction regulation of Cryptococcus by the ubiquitin-proteasome system. This study identified an F-box protein, Cdc4, which contains a putative F-box domain and eight WD40 domains. The expression pattern analysis showed that the CDC4 gene was expressed in various developmental stages of C. neoformans, and the Cdc4 protein was localized in the nucleus of cryptococcal cells. In vitro stress responses assays showed that the CDC4 overexpression strains are sensitive to SDS and MMS but not Congo red, implying that Cdc4 may regulate the cell membrane integrity and repair of DNA damage of C. neoformans. Fungal virulence assay showed that although the cdc4Δ mutant grows normally and can produce typical virulence factors such as capsule and melanin, the cdc4Δ mutant completely loses its pathogenicity in a mouse systemic-infection model. Fungal mating assays showed that Cdc4 is also essential for fungal sexual reproduction in C. neoformans. Although normal mating hyphae were observed during mating, the basidiospores' production was blocked in bilateral mating between cdc4Δ mutants. Fungal nuclei development assay showed that the nuclei failed to undergo meiosis after fusion inside the basidia during the bilateral mating of cdc4Δ mutants, indicating that Cdc4 is critical to regulating meiosis during cryptococcal mating. In summary, our study revealed that the F-box protein Cdc4 is critical for fungal virulence and sexual reproduction in C. neoformans.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , F-Box Proteins , Animals , Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , F-Box Proteins/genetics , Mice , Virulence
11.
Microorganisms ; 8(11)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158259

ABSTRACT

Cryptococcus neoformans is a basidiomycete human fungal pathogen causing lethal meningoencephalitis, mainly in immunocompromised patients. Oxidoreductases are a class of enzymes that catalyze redox, playing a crucial role in biochemical reactions. In this study, we identified one Cryptococcus oxidoreductase-like protein-encoding gene OLP1 and investigated its role in the sexual reproduction and virulence of C. neoformans. Gene expression patterns analysis showed that the OLP1 gene was expressed in each developmental stage of Cryptococcus, and the Olp1 protein was located in the cytoplasm of Cryptococcus cells. Although it produced normal major virulence factors such as melanin and capsule, the olp1Δ mutants showed growth defects on the yeast extract peptone dextrose (YPD) medium supplemented with lithium chloride (LiCl) and 5-fluorocytosine (5-FC). The fungal mating analysis showed that Olp1 is also essential for fungal sexual reproduction, as olp1Δ mutants show significant defects in hyphae growth and basidiospores production during bisexual reproduction. The fungal nuclei imaging showed that during the bilateral mating of olp1Δ mutants, the nuclei failed to undergo meiosis after fusion in the basidia, indicating that Olp1 is crucial for regulating meiosis during mating. Moreover, Olp1 was also found to be required for fungal virulence in C. neoformans, as the olp1Δ mutants showed significant virulence attenuation in a murine inhalation model. In conclusion, our results showed that the oxidoreductase-like protein Olp1 is required for both fungal sexual reproduction and virulence in C. neoformans.

12.
Pathogens ; 9(11)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114434

ABSTRACT

The capsule of the fungal pathogen Cryptococcus neoformans consists of glucuronoxylomannan (GXM), glucuronoxylomannogalactan (GXMGal), and mannoproteins (MPs). MPs are a kind of glycoproteins with low content but high immunogenicity, which can stimulate the immune protection of the host. However, there is not much information about the role of mannoproteins in virulence of the human fungal pathogen C. neoformans. In this study, we reported the identification and functional analysis of a predicted mannoprotein Cmp1 that regulates fungal virulence in C. neoformans. Gene expression pattern analysis indicates that the CMP1 gene was ubiquitously expressed at all stages of cryptococcal development. Subcellular localization analysis indicated that Cmp1 was localized in the cytoplasm of cryptococcal cells. Disruption or overexpression of CMP1 results in impairing capsule formation in Cryptococcus, but it does not affect the melanin production and sensitivity under various stress conditions, nor does it affect the sexual reproduction process of Cryptococcus. Survival assay showed that the pathogenicity of the cmp1Δ mutant or the CMP1 overexpression strain was significantly attenuated in a murine inhalation model of cryptococcosis. In conclusion, our findings implied that the mannoprotein Cmp1 is required for the virulence of C. neoformans.

13.
Front Cell Dev Biol ; 8: 374, 2020.
Article in English | MEDLINE | ID: mdl-32528953

ABSTRACT

Autophagy (macroautophagy) is an evolutionarily conserved degradation pathway involved in bulk degradation of cytoplasmic organelles, old protein, and other macromolecules and nutrient recycling during starvation. Extensive studies on functions of autophagy-related genes have revealed that autophagy plays a role in cell differentiation and pathogenesis of pathogenic fungi. In this study, we identified and characterized 14 core autophagy machinery genes (ATGs) in C. neoformans. To understand the function of autophagy in virulence and fungal development in C. neoformans, we knocked out the 14 ATGs in both α and a mating type strain backgrounds in C. neoformans, respectively, by using biolistic transformation and in vivo homologous recombination. Fungal virulence assay showed that virulence of each atgΔ mutants was attenuated in a murine inhalation systemic-infection model, although virulence factor production was not dramatically impaired in vitro. Fungal mating assays showed that all the 14 ATGs are essential for fungal sexual reproduction as basidiospore production was blocked in bilateral mating between each atgΔ mutants. Fungal nuclei development assay showed that nuclei in the bilateral mating of each atgΔ mutants failed to undergo meiosis after fusion, indicating autophagy is essential for regulating meiosis during mating. Overall, our study showed that autophagy is essential for fungal virulence and sexual reproduction in C. neoformans, which likely represents a conserved novel virulence and sexual reproduction control mechanism that involves the autophagy-mediated proteolysis pathway.

14.
Int J Mol Sci ; 21(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085473

ABSTRACT

Zinc is one of the essential trace elements in eukaryotes and it is a critical structural component of a large number of proteins. Zinc finger proteins (ZNFs) are zinc-finger domain-containing proteins stabilized by bound zinc ions and they form the most abundant proteins, serving extraordinarily diverse biological functions. In recent years, many ZNFs have been identified and characterized in the human fungal pathogen Cryptococcus neoformans, a fungal pathogen causing fatal meningitis mainly in immunocompromised individuals. It has been shown that ZNFs play important roles in the morphological development, differentiation, and virulence of C. neoformans. In this review, we, first, briefly introduce the ZNFs and their classification. Then, we explain the identification and classification of the ZNFs in C. neoformans. Next, we focus on the biological role of the ZNFs functionally characterized so far in the sexual reproduction, virulence factor production, ion homeostasis, pathogenesis, and stress resistance in C. neoformans. We also discuss the perspectives on future function studies of ZNFs in C. neoformans.


Subject(s)
Cryptococcus neoformans/metabolism , Fungal Proteins/metabolism , Zinc Fingers , Cryptococcus neoformans/pathogenicity , Humans , Reproduction , Stress, Physiological , Virulence
15.
Fungal Genet Biol ; 124: 59-72, 2019 03.
Article in English | MEDLINE | ID: mdl-30630094

ABSTRACT

Cryptococcus neoformans is a ubiquitous yeast pathogen that often infects the human central nervous system (CNS) to cause meningitis in immunocompromised individuals. Although numerous signaling pathways and factors important for fungal sexual reproduction and virulence have been investigated, their precise mechanism of action remains to be further elucidated. In this study, we identified and characterized a novel zinc finger protein Zfp1 that regulates fungal sexual reproduction and virulence in C. neoformans. qRT-PCR and ZFP1 promoter regulatory activity assays revealed a ubiquitous expression pattern of ZFP1 in all stages during mating. Subcellular localization analysis indicates that Zfp1 is targeted to the cytoplasm of C. neoformans. In vitro assays of stress responses showed that zfp1Δ mutants and the ZFP1 overexpressed strains ZFP1OE are hypersensitive to SDS, but not Congo red, indicating that Zfp1 may regulate cell membrane integrity. Zfp1 is also essential for fungal sexual reproduction because basidiospore production was blocked in bilateral mating between zfp1Δ mutants or ZFP1 overexpressed strains. Fungal nuclei development assay showed that nuclei in the bilateral mating of zfp1Δ mutants or ZFP1 overexpressed strains failed to undergo meiosis after fusion, indicating Zfp1 is important for regulating meiosis during mating. Although zfp1Δ mutants showed normal growth and produced normal major virulence factors, virulence was attenuated in a murine model. Interestingly, we found that the ZFP1 overexpressed strains were avirulent in a murine systemic-infection model. Overall, our study showed that the zinc finger protein Zfp1 is essential for fungal sporulation and virulence in C. neoformans.


Subject(s)
Cryptococcus neoformans/physiology , Cryptococcus neoformans/pathogenicity , Fungal Proteins/physiology , Zinc Fingers/physiology , Amino Acid Motifs , Animals , Blotting, Western , Cell Membrane/metabolism , Cell Nucleus Division/physiology , Cryptococcosis/microbiology , Cryptococcosis/pathology , Cryptococcus neoformans/genetics , Female , Fungal Capsules/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression Profiling , Meiosis/physiology , Mice, Inbred BALB C , Real-Time Polymerase Chain Reaction , Virulence , Zinc/metabolism , Zinc Fingers/genetics
16.
Biochem Biophys Res Commun ; 503(3): 1450-1456, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30054042

ABSTRACT

Vascular disease can manifest as stenotic plaques or ectatic aneurysms. Human abdominal aortic aneurysms (AAA) comprise an inflammatory disease characterized by the predominance of T helper type 2 (Th2) cytokine expression. Leptin has been clearly demonstrated to play an important role in regulating Th0 cell to Th1. So, we hypothesize that leptin has a protective effect on aneurysm formation. In this study, we demonstrated that intraperitoneal injection of leptin attenuated Ang II-induced AAA formation in ApoE-/- mice with no effect on serum lipids and systolic blood pressure. To investigate the mechanisms involved, we found that leptin pretreatment exhibited decreased protein expression of matrix metalloproteinase 2 (MMP-2) and MMP-9 and increased transforming growth factor-ß1 (TGF-ß1). We also examined potential mechanism of leptin as a modulator of the immune response. Our results proved that pretreatment with leptin downregulated protein expression of Th2 cytokine IL-4 and mRNA levels of GATA-3, the key transcription factor for Th2 polarization, and upregulated Th1 cytokine INF-γ and T-bet, the key transcription factor for Th1 polarization. Taken together, leptin, with the effect of regulation of Th1/Th2 cytokines, may have therapeutic potential for the treatment of AAA. Leptin may constitute a novel therapeutic strategy to prevent AAA formation.


Subject(s)
Angiotensin II/pharmacology , Aortic Aneurysm, Abdominal/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Leptin/metabolism , Angiotensin II/administration & dosage , Animals , Aortic Aneurysm, Abdominal/genetics , Inflammation/metabolism , Injections, Intraperitoneal , Leptin/administration & dosage , Leptin/blood , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins/administration & dosage , Recombinant Proteins/blood , Recombinant Proteins/metabolism , T-Lymphocytes/metabolism , Th1 Cells
17.
mBio ; 9(1)2018 01 09.
Article in English | MEDLINE | ID: mdl-29317510

ABSTRACT

Cryptococcus neoformans is the main etiologic agent of cryptococcal meningitis and causes a significant number of deadly infections per year. Although it is well appreciated that host immune responses are crucial for defense against cryptococcosis, our understanding of factors that control the development of effective immunity to this fungus remains incomplete. In previous studies, we identified the F-box protein Fbp1 as a novel determinant of C. neoformans virulence. In this study, we found that the hypovirulence of the fbp1Δ mutant is linked to the development of a robust host immune response. Infection with the fbp1Δ mutant induces a rapid influx of CCR2+ monocytes and their differentiation into monocyte-derived dendritic cells (mo-DCs). Depletion of CCR2+ monocytes and their derivative mo-DCs resulted in impaired activation of a protective inflammatory response and the rapid death of mice infected with the fbp1Δ mutant. Mice lacking B and T cells also developed fungal meningitis and succumbed to infection with the fbp1Δ mutant, demonstrating that adaptive immune responses to the fbp1Δ mutant help to maintain the long-term survival of the host. Adaptive immune responses to the fbp1Δ mutant were characterized by enhanced differentiation of Th1 and Th17 CD4+ T cells together with diminished Th2 responses compared to the H99 parental strain. Importantly, we found that the enhanced immunogenicity of fbp1Δ mutant yeast cells can be harnessed to confer protection against a subsequent infection with the virulent H99 parental strain. Altogether, our findings suggest that Fbp1 functions as a novel virulence factor that shapes the immunogenicity of C. neoformansIMPORTANCECryptococcus neoformans is the most common cause of deadly fungal meningitis, with over 270,000 infections per year. Immune responses are critically required for the prevention of cryptococcosis, and patients with impaired immunity and low CD4+ T cell numbers are at high risk of developing these deadly infections. Although it is well appreciated that the development of protective immunity is shaped by the interactions of the host immune system with fungal cells, our understanding of fungal products that influence this process remains poor. In this study, we found that the activity of F-box protein 1 (Fbp1) in highly virulent C. neoformans clinical strain H99 shapes its immunogenicity and thus affects the development of protective immune responses in the host. The identification of this new mechanism of virulence may facilitate the future development of therapeutic interventions aimed at boosting antifungal host immunity.


Subject(s)
Cryptococcus neoformans/immunology , F-Box Proteins/immunology , Immune Evasion , Meningitis, Cryptococcal/microbiology , Meningitis, Cryptococcal/pathology , Virulence Factors/immunology , Animals , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Dendritic Cells/immunology , Disease Models, Animal , F-Box Proteins/genetics , Gene Deletion , Mice , Monocytes/immunology , Survival Analysis , Virulence Factors/genetics
18.
Fungal Genet Biol ; 113: 42-51, 2018 04.
Article in English | MEDLINE | ID: mdl-29357302

ABSTRACT

Cryptococcus neoformans is the most common cause of deadly fungal meningitis. This fungus has a complex inositol acquisition and utilization system, and our previous studies have shown the importance of inositol utilization in cryptococcal development and virulence. However, how inositol utilization is regulated in this fungus remains unknown. In this study, we found that inositol, irrespective of the presence of glucose in the media, represses the expression of C. neoformans genes involved in inositol pyrophosphate biosynthesis, including the gene encoding inositol hexakisphosphate kinase Kcs1. Kcs1 was recently reported to regulate inositol metabolism in Saccharomyces cerevisiae and to impact virulence in C. neoformans. To examine the potential role of Kcs1 in inositol regulation in C. neoformans, we generated the kcs1Δ mutant and compared its phenotype with the wild type strain. We found that Kcs1 negatively regulates inositol uptake and catabolism in C. neoformans, but, in contrast to Kcs1 function in S. cerevisiae, does not appear to regulate inositol biosynthesis. Together, these results show that Kcs1 functions to fine-tune inositol acquisition to maintain inositol homeostasis in C. neoformans.


Subject(s)
Cryptococcus neoformans/enzymology , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Inositol/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Cryptococcus neoformans/genetics , Diphosphates/metabolism , Fungal Proteins/genetics , Gene Deletion , Glucose/chemistry , Homeostasis , Phosphotransferases (Phosphate Group Acceptor)/genetics , Virulence
19.
J Invertebr Pathol ; 149: 36-43, 2017 10.
Article in English | MEDLINE | ID: mdl-28668257

ABSTRACT

Nosema bombycis is an obligate intracellular parasite, which can cause pébrine disease. To investigate the effects of N. bombycis infection, 5th-instar silkworms were challenged with N. bombycis isolate CQ1, and two-dimensional gel electrophoresis analysis was performed to analyze the differentially expressed proteins in infected and uninfected silkworm fat bodies 1, 2, 4, 6 and 8days post-infection (dpi). 46 differentially expressed proteins were identified at the 5 time points using MALDI-TOF/TOF MS. The changed proteins mainly involved in immune response, energy metabolism, and molecular synthesis. Overall, the identified proteins may provide important insights into the mechanisms of the silkworm response to N. bombycis infection.


Subject(s)
Bombyx/metabolism , Bombyx/microbiology , Fat Body/metabolism , Microsporidiosis/metabolism , Nosema/physiology , Animals , Proteomics
20.
Sci Rep ; 5: 8688, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25732347

ABSTRACT

The atypical Gß-like/RACK1 Gib2 protein promotes cAMP signalling that plays a central role in regulating the virulence of Cryptococcus neoformans. Gib2 contains a seven-bladed ß transducin structure and is emerging as a scaffold protein interconnecting signalling pathways through interactions with various protein partners. Here, we present the crystal structure of Gib2 at a 2.2-Å resolution. The structure allows us to analyse the association between Gib2 and the ribosome, as well as to identify the Gib2 amino acid residues involved in ribosome binding. Our studies not only suggest that Gib2 has a role in protein translation but also present Gib2 as a physical link at the crossroads of various regulatory pathways important for the growth and virulence of C. neoformans.


Subject(s)
Cryptococcus neoformans/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Models, Molecular , Ribosomes/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Conserved Sequence , Cryptococcus neoformans/growth & development , Eukaryotic Initiation Factor-4A/metabolism , GTP-Binding Proteins/chemistry , Humans , Molecular Sequence Data , Neoplasm Proteins/chemistry , Protein Binding , Protein Conformation , Receptors for Activated C Kinase , Receptors, Cell Surface/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...