Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
RSC Adv ; 9(51): 29840-29846, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-35531559

ABSTRACT

The spacer layer is a key component of fully printable mesoscopic perovskite solar cells, but its precise characteristics are far from being understood in relation to the device design. In the present work, we perform a detailed systematic study on the effects of spacer parameters, such as size of building blocks, layer thickness, etc., on properties of the perovskite filler, insulating ability and performance of fully printable mesoscopic perovskite solar cells by combining the techniques of time-resolved photoluminescence, high-resolution TEM, insulating resistance measurements, impedance spectroscopy and J-V characteristics. Drawing on the deep understanding from these studies, we formulate key principles, which are anticipated to guide the design of the advanced spacer layer for fully printable mesoscopic perovskite solar cells.

2.
Nanoscale ; 7(24): 10708-18, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26030146

ABSTRACT

Simplifying the process of fine-tuning the electronic and optical properties of graphene oxide (GO) is of importance in order to fully utilize it as the hole interfacial layer (HIL). We introduced silver trifluoromethanesulfonate (AgOTf), an inorganic chemical dopant, that tunes and controls the properties of single-layered GO films synthesized by chemical vapor deposition. The morphology, work function, mobility, sheet resistance, and transmittance of the GO film were systematically tuned by various doping concentrations. We further developed a solution-processable low-temperature hole interfacial layer (HIL) poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS):AgOTf-doped GO HIL in highly efficient perovskite solar cells. The PEDOT: PSS:AgOTf-doped GO HIL grants the desirable charge-collection in the HIL allowing the entire device to be prepared at temperatures less than 120 °C. The fabricated perovskite solar cells utilize a rigid substrate and demonstrate compelling photovoltaic performance with a power conversion efficiency (PCE) of 11.90%. Moreover, flexible devices prepared using a polyethylene terephthalate (PET)/ITO demonstrate a PCE of 9.67%, while ITO-free flexible devices adopting PET/aluminum doped zinc oxide (AZO)/silver (Ag)/AZO demonstrate a PCE of 7.97%. This study shows that the PEDOT: PSS:AgOTf-doped GO HIL has significant potential to contribute to the development of low-cost solar cells.

3.
Opt Express ; 23(3): A83-91, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25836256

ABSTRACT

We report perovskite solar cells with a new device structure that employ highly conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PEDOT: PSS) as the top electrode replacing commonly used metal electrodes. The PEDOT: PSS top electrode is prepared from its aqueous solution through a transfer-lamination technique rather than direct spin-coating, which converts the CH(3)NH(3)PbI(3) into PbI(2). Perovskite solar cells with the structure of glass/FTO/c-TiO(2)/m-TiO(2)/CH(3)NH(3)PbI(3)/spiro-OMeTAD/PEDOT:PSS yield a maximum open-circuit voltage (V(OC)) of 1.02 V, and a maximum power conversion efficiency (PCE) of 11.29% under AM1.5 100 mW/cm(2) illumination. The whole device was fabricated in air without high-vacuum deposition which simplifies the processing and lowers the threshold of both scientific research and industrial production of perovskite solar cells.

4.
J Am Chem Soc ; 137(5): 1790-3, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25594109

ABSTRACT

By the introduction of an organic silane self-assembled monolayer, an interface-engineering approach is demonstrated for hole-conductor-free, fully printable mesoscopic perovskite solar cells based on a carbon counter electrode. The self-assembled silane monolayer is incorporated between the TiO2 and CH3NH3PbI3, resulting in optimized interface band alignments and enhanced charge lifetime. The average power conversion efficiency is improved from 9.6% to 11.7%, with a highest efficiency of 12.7%, for this low-cost perovskite solar cell.

5.
Science ; 345(6194): 295-8, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25035487

ABSTRACT

We fabricated a perovskite solar cell that uses a double layer of mesoporous TiO2 and ZrO2 as a scaffold infiltrated with perovskite and does not require a hole-conducting layer. The perovskite was produced by drop-casting a solution of PbI2, methylammonium (MA) iodide, and 5-ammoniumvaleric acid (5-AVA) iodide through a porous carbon film. The 5-AVA templating created mixed-cation perovskite (5-AVA)x(MA)1- xPbI3 crystals with lower defect concentration and better pore filling as well as more complete contact with the TiO2 scaffold, resulting in a longer exciton lifetime and a higher quantum yield for photoinduced charge separation as compared to MAPbI3. The cell achieved a certified power conversion efficiency of 12.8% and was stable for >1000 hours in ambient air under full sunlight.

6.
Phys Chem Chem Phys ; 16(33): 17743-7, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25030303

ABSTRACT

We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 µm, this very simple and fully printable solid-state DSSC with D102 dye and spiro-OMeTAD hole transport materials presents efficiencies of 1.73% when irradiated from the front side and 1.06% when irradiated from the rear side under a standard simulated sunlight condition (AM 1.5 Global, 100 mW cm(-2)). Higher parameters could be expected with a better transparent mesoscopic counter electrode and hole conductor for the printable monolithic mesoscopic solid-state DSSC.

7.
J Phys Chem Lett ; 5(12): 2160-4, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-26270509

ABSTRACT

A hole-conductor-free fully printable mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cell was developed with TiO2 nanosheets containing high levels of exposed (001) facets. The solar cell embodiment employed a double layer of mesoporous TiO2 and ZrO2 as a scaffold infiltrated by perovskite as a light harvester. No hole conductor or Au reflector was employed. Instead, the back contact was simply a printable carbon layer. The perovskite was infiltrated from solution through the porous carbon layer. The high reactivity of (001) facets in TiO2 nanosheets improved the interfacial properties between the perovskite and the electron collector. As a result, photoelectric conversion efficiency of up to 10.64% was obtained with the hole-conductor-free fully printable mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cell. The advantages of fully printable technology and the use of low-cost carbon-materials-based counter electrode and hole-conductor-free structure provide this design a promising prospect to approach low-cost photovoltaic devices.

8.
Sci Rep ; 3: 3132, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24185501

ABSTRACT

A mesoscopic methylammonium lead iodide (CH3NH3PbI3) perovskite/TiO2 heterojunction solar cell is developed with low-cost carbon counter electrode (CE) and full printable process. With carbon black/spheroidal graphite CE, this mesoscopic heterojunction solar cell presents high stability and power conversion efficiency of 6.64%, which is higher than that of the flaky graphite based device and comparable to the conventional Au version.

9.
Phys Chem Chem Phys ; 14(41): 14383-90, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23010982

ABSTRACT

A new thiolate/disulfide mediator was designed and synthesized by employing DFT calculations as a guide. It possesses high transparency to visible light, a very attractive feature for bifacially active transparent DSCs that require a highly transparent counter electrode (CE). Compared to the reported and most promising thiolate/disulfide mediator T(-)/T(2), this new analogous mediator produced a major enhancement in open circuit potential (V(OC)) by about 40 mV and correspondingly a higher power conversion efficiency (η) for DSCs. Furthermore, a highly uniform and transparent (transmittance > 91%) poly(3,4-ethylenedioxythiophene) (PEDOT(BE)) CE was prepared and could efficiently catalyze the reduction of the disulfide. Based on the novel transparent redox couple and PEDOT(BE) CE, a new type of iodine-free and Pt-free transparent bifacial DSC was successfully fabricated. This new bifacial device could not only yield a promising front-illuminated η of 6.07%, but also produce an attractive η as high as 4.35% for rear-side irradiation, which exceeds the rear-illuminated η of 3.93% achieved for the same type of device, employing the dark-colored I(-)/I(3)(-) electrolyte.

10.
Nanoscale Res Lett ; 6: 606, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-22115421

ABSTRACT

A mesoscopic nitrogen-doped TiO2 sphere has been developed for a quasi-solid-state dye-sensitized solar cell [DSSC]. Compared with the undoped TiO2 sphere, the quasi-solid-state DSSC based on the nitrogen-doped TiO2 sphere shows more excellent photovoltaic performance. The photoelectrochemistry of electrodes based on nitrogen-doped and undoped TiO2 spheres was characterized with Mott-Schottky analysis, intensity modulated photocurrent spectroscopy, and electrochemical impedance spectroscopy, which indicated that both the quasi-Fermi level and the charge transport of the photoelectrode were improved after being doped with nitrogen. As a result, a photoelectric conversion efficiency of 6.01% was obtained for the quasi-solid-state DSSC.

11.
Zhonghua Wai Ke Za Zhi ; 42(7): 396-9, 2004 Apr 07.
Article in Chinese | MEDLINE | ID: mdl-15144665

ABSTRACT

OBJECTIVE: To investigate the effect of the escharectomy during burn shock stage on expression of glucose translator-4 (GLUT4) mRNA in skeletal muscle and adipose tissue. METHODS: 30% TBSA scalded rats were employed. Escharectomy were conducted at 8 h, 24 h, 168 h after burns respectively. Insulin, glucagon, cortisol and glucose levels in serum were analyzed. RT-PCR were employed to analyze GLUT4 mRNA expression in skeletal muscle and adipose tissue. RESULTS: Glucagon, cortisol and glucose levels in serum were declined in groups which escharectomy were conducted during burn shock stage. GLUT4 mRNA expression in both skeletal muscle and adipose tissue were downregulated after burns and escharectomy conducted during burn shock stage made it restored to near normal. CONCLUSION: GLUT4 mRNA expression will declined after major burns in skeletal muscle and adipose tissue. Escharectomy during shock stage could make it upregulated, which will be helpful to improve glucose metabolism and hypermetabolism after major burns.


Subject(s)
Burns/surgery , Monosaccharide Transport Proteins/genetics , Adipose Tissue/metabolism , Animals , Blood Glucose , Burns/physiopathology , Gene Expression , Glucagon/blood , Hydrocortisone/blood , Insulin/blood , Male , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Shock, Traumatic/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...