Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 891, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33563959

ABSTRACT

Post-translational methylation plays a crucial role in regulating and optimizing protein function. Protein histidine methylation, occurring as the two isomers 1- and 3-methylhistidine (1MH and 3MH), was first reported five decades ago, but remains largely unexplored. Here we report that METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mouse and human proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is preferably a small amino acid, allowing METTL9 to methylate a number of HxH-containing proteins, including the immunomodulatory protein S100A9 and the NDUFB3 subunit of mitochondrial respiratory Complex I. Notably, METTL9-mediated methylation enhances respiration via Complex I, and the presence of 1MH in an HxH-containing peptide reduced its zinc binding affinity. Our results establish METTL9-mediated 1MH as a pervasive protein modification, thus setting the stage for further functional studies on protein histidine methylation.


Subject(s)
Methylhistidines/metabolism , Methyltransferases/metabolism , Proteome/metabolism , Amino Acid Motifs , Animals , Cells, Cultured , Histidine/metabolism , Humans , Mammals/classification , Mammals/genetics , Mammals/metabolism , Methylation , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mutation , Protein Processing, Post-Translational , Proteome/chemistry , Substrate Specificity , Zinc/metabolism
2.
Biochem Biophys Res Commun ; 534: 1020-1025, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33131771

ABSTRACT

Significant cellular morphology changes in renal tubules were observed in diabetes patients and animal models. However, the interaction between insulin and tubular epithelial cells microvillar structure remains obscure. To understand microvillar dynamics, we used Scanning Ion Conductance Microscope to visualize microvillar in the living cell. Here, we found two layers of microvilli on the tubular epithelial cell surface: short compact microvilli and netlike long microvilli. Insulin treatment could increase microvilli length and density. This process was mediated by the PI3K/PLCγ signaling pathway, other than the PI3K/Arp2/3 signal pathway. In conclusion, our findings present a novel insulin signaling transduction mechanism, which contributes to understanding renal tubular epithelial cell microvilli dynamic regulation.


Subject(s)
Epithelial Cells/metabolism , Insulin/metabolism , Kidney Tubules/metabolism , Microvilli/metabolism , Phospholipase C gamma/metabolism , Signal Transduction , Animals , Anura , Cell Line , Epithelial Cells/cytology , Humans , Kidney Tubules/cytology
3.
J Biol Chem ; 295(49): 16545-16561, 2020 12 04.
Article in English | MEDLINE | ID: mdl-32934009

ABSTRACT

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Subject(s)
Dictyostelium/enzymology , Prolyl Hydroxylases/metabolism , Protozoan Proteins/metabolism , Toxoplasma/enzymology , Amino Acid Sequence , Animals , Binding Sites , Biocatalysis , Crystallography, X-Ray , Humans , Hydroxylation , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kinetics , Molecular Dynamics Simulation , Oxygen/metabolism , Prolyl Hydroxylases/chemistry , Prolyl Hydroxylases/genetics , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , S-Phase Kinase-Associated Proteins/chemistry , S-Phase Kinase-Associated Proteins/metabolism , Sequence Alignment , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...