Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Asian J Pharm Sci ; 19(3): 100913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38903129

ABSTRACT

Flare and multiple recurrences pose significant challenges in gouty arthritis. Traditional treatments provide temporary relief from inflammation but fail to promptly alleviate patient pain or effectively prevent subsequent recurrences. It should also be noted that both anti-inflammation and metabolism of uric acid are necessary for gouty arthritis, calling for therapeutic systems to achieve these two goals simultaneously. In this study, we propose a biomimetic integrated nanozyme, HMPB-Pt@MM, comprising platinum nanozyme and hollow Prussian blue. It demonstrates anti-inflammatory properties by eliminating reactive oxygen species and reducing infiltration of inflammatory macrophages. Additionally, it rapidly targets inflamed ankles through the camouflage of macrophage membranes. Furthermore, HMPB-Pt@MM exhibits urate oxidase-like capabilities, continuously metabolizing locally elevated uric acid concentrations, ultimately inhibiting multiple recurrences of gouty arthritis. In summary, HMPB-Pt@MM integrates ROS clearance with uric acid metabolism, offering a promising platform for the treatment of gouty arthritis.

2.
Mater Today Bio ; 26: 101085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38765248

ABSTRACT

Breast cancer is the most diagnosed malignancy in women globally, and drug resistance is among the major obstacles to effective breast cancer treatment. Emerging evidence indicates that photothermal therapy and ferroptosis are both promising therapeutic techniques for the treatment of drug-resistant breast tumors. In this study, we proposed a thermal/ferroptosis/magnetic resonance imaging (MRI) triple functional nanoparticle (I@P-ss-FRT) in which ferritin, an iron storage material with excellent cellular uptake capacity, was attached via disulfide bonds onto polydopamine coated iron oxide nanoparticle (I@P) as photothermal transduction agent and MRI probe. I@P-ss-FRT converted the near-infrared light (NIR) into localized heat which accelerated the release of ferrous ions from ferritin accomplished by glutathione reduction and subsequently induced ferroptosis. The drug-resistant cancer cell lines exhibited a more significant uptake of I@P-ss-FRT and sensitivity to PTT/ferroptosis compared with normal cancer cell lines. In vivo, I@P-ss-FRT plus NIR displayed the best tumor-killing potential with inhibitory rate of 83.46 %, along with a decline in GSH/GPX-4 content and an increase in lipid peroxides generation at tumor sites. Therefore, I@P-ss-FRT can be applied to combat drug-resistant breast cancer.

3.
Angew Chem Int Ed Engl ; 62(26): e202301631, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37017994

ABSTRACT

High energy density and intrinsic safety are the central pursuits in developing rechargeable Zinc-ion batteries (ZIBs). The capacity and stability of nickel cobalt oxide (NCO) cathode are unsatisfactory because of its semiconductor character. Herein, we propose a built-in electric field (BEF) approach by synergizing cationic vacancies and ferroelectric spontaneous polarization on cathode side to facilitate electron adsorption and suppress zinc dendrite growth on the anode side. Concretely, NCO with cationic vacancies was constructed to expand lattice spacing for enhanced zinc-ion storage. Heterojunction with BEF leads to the Heterojunction//Zn cell exhibiting a capacity of 170.3 mAh g-1 at 400 mA g-1 and delivering a competitive capacity retention of 83.3 % over 3000 cycles at 2 A g-1 . We conclude the role of spontaneous polarization in suppressing zinc dendrite growth dynamics, which is conducive to developing high-capacity and high-safety batteries via tailoring defective materials with ferroelectric polarization on the cathode.


Subject(s)
Dendrites , Zinc , Cations , Electrodes
4.
Nanoscale ; 14(35): 12713-12721, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35996893

ABSTRACT

Controllable synthesis of MOFs with desired structures is of great significance to deepen the understanding of the crystal nucleation-growth mechanism and deliver unique structural features to their derived metal oxides with target catalytic applications. In this study, NH2-Ce-BDC with morphology similar to a second-order magic cube (mc) is facile synthesized via H+ mediation in nucleation and growth stages. The pertinent variables that can greatly influence the formation of magic cube-like structures (MCS) were investigated, in which the concentric diffusion field was found to be one of the key factors. Upon calcination, the derived CeO2 inherits unique gullies and grooves located on the pristine MOFs surface, which is quite useful for atomic layer deposition (ALD) of platinum (Pt) nanoparticles because of strong interaction with MOF-derived CeO2 (mc-CeO2). XPS, H2-TPR, Raman, and in situ DRIFTS characterization results show that there is a stronger interaction between Pt and mc-CeO2 in mc-Pt/CeO2 compared with c-Pt/CeO2 that is derived from the well-developed cubic Ce-MOFs. Furthermore, Pt2+ ions, hydroxyl oxygen, and oxygen defects in mc-Pt/CeO2 account highly for exemplary catalytic activity toward HCHO oxidation.

5.
Nat Commun ; 13(1): 2454, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35508619

ABSTRACT

Liver gene therapy with adeno-associated viral (AAV) vectors delivering clotting factor transgenes into hepatocytes has shown multiyear therapeutic benefit in adults with hemophilia. However, the mostly episomal nature of AAV vectors challenges their application to young pediatric patients. We developed lentiviral vectors, which integrate in the host cell genome, that achieve efficient liver gene transfer in mice, dogs and non-human primates, by intravenous delivery. Here we first compare engineered coagulation factor VIII transgenes and show that codon-usage optimization improved expression 10-20-fold in hemophilia A mice and that inclusion of an unstructured XTEN peptide, known to increase the half-life of the payload protein, provided an additional >10-fold increase in overall factor VIII output in mice and non-human primates. Stable nearly life-long normal and above-normal factor VIII activity was achieved in hemophilia A mouse models. Overall, we show long-term factor VIII activity and restoration of hemostasis, by lentiviral gene therapy to hemophilia A mice and normal-range factor VIII activity in non-human primate, paving the way for potential clinical application.


Subject(s)
Hemophilia A , Animals , Child , Dogs , Factor VIII/genetics , Genetic Therapy , Genetic Vectors/genetics , Hemophilia A/genetics , Hemophilia A/therapy , Humans , Liver/metabolism , Mice , Primates/genetics
6.
Plant Dis ; 106(5): 1358-1365, 2022 May.
Article in English | MEDLINE | ID: mdl-34844448

ABSTRACT

Root-knot nematodes (Meloidogyne spp.) are obligate plant parasites that cause severe economic losses to agricultural crops worldwide. Because of serious health and environmental concerns related to the use of chemical nematicides, the development of efficient alternatives is of great importance. Biological control through exploiting the potential of rhizosphere microorganisms is currently accepted as an important approach for pest management in sustainable agriculture. In our research, during screening of rhizosphere bacteria against the root-knot nematodes Meloidogyne incognita, Ochrobactrum pseudogrignonense strain NC1 from the rhizosphere of healthy tomatoes showed strong nematode inhibition. A volatile nematicidal assay showed that the cell-free fermentation filtrate in the first-row wells of 12-well tissue culture plates caused M. incognita juvenile mortality in the second-row wells. Gas chromatography-mass spectrometry analysis revealed that dimethyl disulfide (DMDS) and benzaldehyde were the main volatile compounds produced by strain NC1. The nematicidal activity of these compounds indicated that the lethal concentration 50 against the M. incognita juveniles in the second-row wells and the fourth-row wells were 23.4 µmol/ml and 30.7 µmol/ml for DMDS and 4.7 µmol/ml and 15.2 µmol/ml for benzaldehyde, respectively. A greenhouse trial using O. pseudogrignonense strain NC1 provided management efficiencies of root-knot nematodes of 88 to 100% compared with the untreated control. This study demonstrated that nematode-induced root-gall suppression mediated by the bacterial volatiles DMDS and benzaldehyde presents a new opportunity for root-knot nematode management.


Subject(s)
Solanum lycopersicum , Tylenchoidea , Animals , Antinematodal Agents/pharmacology , Bacteria , Benzaldehydes , Solanum lycopersicum/microbiology , Tylenchoidea/physiology
7.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2688-2702, 2021 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-34472289

ABSTRACT

Plastics are widely used in daily life. Due to poor management and disposal, about 80% of plastic wastes were buried in landfills and eventually became land and ocean waste, causing serious environmental pollution. Recycling plastics is a desirable approach, but not applicable for most of the plastic waste. Microbial degradation offers an environmentally friendly way to degrade the plastic wastes, and this review summarizes the potential microbes, enzymes, and the underpinning mechanisms for degrading six most commonly used plastics including polyethylene terephthalate, polyethylene, polyvinyl chloride, polypropylene, polystyrene and polyurethane. The challenges and future perspectives on microbial degradation of plastics were proposed.


Subject(s)
Plastics , Recycling , Biodegradation, Environmental , Polyurethanes
8.
Front Immunol ; 11: 138, 2020.
Article in English | MEDLINE | ID: mdl-32117285

ABSTRACT

The development of neutralizing antibodies (inhibitors) against factor VIII (FVIII) is a major complication of hemophilia A treatment. The sole clinical therapy to restore FVIII tolerance in patients with inhibitors remains immune tolerance induction (ITI) which is expensive, difficult to administer and not always successful. Although not fully understood, the mechanism of ITI is thought to rely on inhibition of FVIII-specific B cells (1). Its efficacy might therefore be improved through more aggressive B cell suppression. FcγRIIB is an inhibitory Fc receptor that down-regulates B cell signaling when cross-linked with the B cell receptor (BCR). We sought to investigate if recombinant FVIII Fc (rFVIIIFc), an Fc fusion molecule composed of FVIII and the Fc region of immunoglobulin G1 (IgG1) (2), is able to inhibit B cell activation more readily than FVIII. rFVIIIFc was able to bind FVIII-exposed and naïve B cells from hemophilia A mice as well as a FVIII-specific murine B cell hybridoma line (413 cells). An anti-FcγRIIB antibody and FVIII inhibited binding, suggesting that rFVIIIFc is able to interact with both FcγRIIB and the BCR. Furthermore, incubation of B cells from FVIII-exposed mice and 413 cells with rFVIIIFc resulted in increased phosphorylation of SH-2 containing inositol 5-phosphatase (SHIP) when compared to FVIII. B cells from FVIII-exposed hemophilia A mice also exhibited decreased extracellular signal-regulated kinase (ERK) phosphorylation when exposed to rFVIIIFc. These differences were absent in B cells from naïve, non-FVIII exposed hemophilic mice suggesting an antigen-dependent effect. Finally, rFVIIIFc was able to inhibit B cell calcium flux induced by anti-Ig F(ab)2. Our results therefore indicate that rFVIIIFc is able to crosslink FcγRIIB and the BCR of FVIII-specific B cells, causing inhibitory signaling in these cells.


Subject(s)
B-Lymphocytes/immunology , Factor VIII/immunology , Lymphocyte Activation/immunology , Receptors, Fc/immunology , Receptors, IgG/drug effects , Recombinant Fusion Proteins/pharmacology , Animals , B-Lymphocytes/drug effects , Hemophilia A , Immunoglobulin Fc Fragments/immunology , Lymphocyte Activation/drug effects , Mice , Receptors, IgG/immunology , Recombinant Fusion Proteins/immunology
9.
Blood ; 135(17): 1484-1496, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32078672

ABSTRACT

Factor VIII (FVIII) replacement products enable comprehensive care in hemophilia A. Treatment goals in severe hemophilia A are expanding beyond low annualized bleed rates to include long-term outcomes associated with high sustained FVIII levels. Endogenous von Willebrand factor (VWF) stabilizes and protects FVIII from degradation and clearance, but it also subjects FVIII to a half-life ceiling of ∼15 to 19 hours. Increasing recombinant FVIII (rFVIII) half-life further is ultimately dependent upon uncoupling rFVIII from endogenous VWF. We have developed a new class of FVIII replacement, rFVIIIFc-VWF-XTEN (BIVV001), that is physically decoupled from endogenous VWF and has enhanced pharmacokinetic properties compared with all previous FVIII products. BIVV001 was bioengineered as a unique fusion protein consisting of a VWF-D'D3 domain fused to rFVIII via immunoglobulin-G1 Fc domains and 2 XTEN polypeptides (Amunix Pharmaceuticals, Inc, Mountain View, CA). Plasma FVIII half-life after BIVV001 administration in mice and monkeys was 25 to 31 hours and 33 to 34 hours, respectively, representing a three- to fourfold increase in FVIII half-life. Our results showed that multifaceted protein engineering, far beyond a few amino acid substitutions, could significantly improve rFVIII pharmacokinetic properties while maintaining hemostatic function. BIVV001 is the first rFVIII with the potential to significantly change the treatment paradigm for severe hemophilia A by providing optimal protection against all bleed types, with less frequent doses. The protein engineering methods described herein can also be applied to other complex proteins.


Subject(s)
Factor VIII/metabolism , Hemophilia A/therapy , Hemorrhage/prevention & control , Recombinant Fusion Proteins/administration & dosage , von Willebrand Factor/metabolism , Animals , Factor VIII/genetics , Hemophilia A/metabolism , Hemophilia A/pathology , Hemostasis , Humans , Male , Mice , Mice, Inbred C57BL , Primates , von Willebrand Factor/genetics
10.
Adv Sci (Weinh) ; 7(18): e2000747, 2020 Sep.
Article in English | MEDLINE | ID: mdl-34437770

ABSTRACT

All-solid-sate Al-air batteries with features of high theoretical energy density, low cost, and environmental-friendliness are promising as power sources for next-generation flexible and wearable electronics. However, the sluggish oxygen reduction reaction (ORR) and poor interfacial contact in air cathodes cause unsatisfied performance. Herein, a free-standing Co3 Fe7 nanoalloy and Co5.47 N encapsulated in 3D nitrogen-doped carbon foam (Co3 Fe7 @Co5.47 N/NCF) is prepared as an additive-free and integrated air cathode for flexible Al-air batteries in both alkaline and neutral electrolytes. The Co3 Fe7 @Co5.47 N/NCF outperforms commercial platinum/carbon (Pt/C) toward ORR with an onset potential of 1.02 V and a positive half-wave potential of 0.92 V in an alkaline electrolyte (0.59 V in sodium chloride solution), which is ascribed to the unique interfacial structure between Co3 Fe7 and Co5.47 N supported by 3D N-doped carbon foam to facilitate fast electron and mass transfer. The high ORR performance is also supported by in-situ electrochemical Raman spectra and density functional theory calculation. Furthermore, the fabricated Al-air battery displays good flexibility and delivers a power density of 199.6 mW cm-2 , and the binder-free and integrated cathode shows better discharge performance than the traditionally slurry casting cathode. This work demonstrates a facile and efficient approach to develop integrated air cathode for metal-air batteries.

11.
Sci Transl Med ; 11(493)2019 05 22.
Article in English | MEDLINE | ID: mdl-31118293

ABSTRACT

Liver-directed gene therapy for the coagulation disorder hemophilia showed safe and effective results in clinical trials using adeno-associated viral vectors to replace a functional coagulation factor, although some unmet needs remain. Lentiviral vectors (LVs) may address some of these hurdles because of their potential for stable expression and the low prevalence of preexisting viral immunity in humans. However, systemic LV administration to hemophilic dogs was associated to mild acute toxicity and low efficacy at the administered doses. Here, exploiting intravital microscopy and LV surface engineering, we report a major role of the human phagocytosis inhibitor CD47, incorporated into LV cell membrane, in protecting LVs from uptake by professional phagocytes and innate immune sensing, thus favoring biodistribution to hepatocytes after systemic administration. By enforcing high CD47 surface content, we generated phagocytosis-shielded LVs which, upon intravenous administration to nonhuman primates, showed selective liver and spleen targeting and enhanced hepatocyte gene transfer compared to parental LV, reaching supraphysiological activity of human coagulation factor IX, the protein encoded by the transgene, without signs of toxicity or clonal expansion of transduced cells.


Subject(s)
Genetic Therapy , Genetic Vectors/therapeutic use , Lentivirus/genetics , Liver/pathology , Phagocytosis , Animals , CD47 Antigen/metabolism , Gene Transfer Techniques , Hepatocytes/metabolism , Humans , Immune Tolerance , Immunity, Innate , Kupffer Cells/metabolism , Macaca , Mice, Inbred C57BL , Mice, Inbred NOD , Phagocytes/metabolism , Tissue Distribution
12.
Dalton Trans ; 47(35): 12162-12171, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30095139

ABSTRACT

In previous studies, photocatalytic heterostructures between two components have usually been distributed randomly at the material's surface. It is significant and important to fabricate a selective heterostructure interface with more efficient charge separation and transfer. In this study, active pores were first investigated through competitive adsorption, degradation efficiency, and selective corrosion. It was found that selective adsorption-induced photosensitization along with active facets led to selective photocorrosion around the pores in ZnO nanosheets. Then, comparison between the properties of selectively and randomly distributed ZnO/CdS heterostructures is presented, namely, phase composition, morphology, pore size, absorbance, electronic band structure, photocurrent density, electrochemical impedance, and hydrogen evolution. Due to the Z-scheme, ZnO/CdS heterostructure selectively bound at the active pores, due to which more efficient charge separation and higher hydrogen evolution were achieved for ZnO/CdS-S. Thus, fabrication of selective heterostructure interface endows ZnO/CdS with more efficient hydrogen evolution.

13.
Sci Rep ; 8: 45715, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368032

ABSTRACT

In this study, a series of hybrid nanostructured photocatalysts P25/(NH4)xWO3 nanocomposites with the average crystallite size of P25 and (NH4)xWO3 of the sample was calculated to be about 30 nm and 130 nm, were successfully synthesized via a simple one-step hydrothermal method. The as-obtained samples was characterized by transmission electron microscopy (TEM), which implies that the P25/(NH4)xWO3 nanocomposites are fabricated with favourable nanosizd interfacial. The XPS results confirmed that the obtained sample consists of mixed chemical valences of W5+ and W6+, the low-valance W5+ sites could be the origin of NIR absorption. As revealed by optical absorption results, P25/(NH4)xWO3 nanocomposites possess high optical absorption in the whole solar spectrum of 200-2500 nm. Benefiting from this unique photo-absorption property and the synergistic effect of P25 and (NH4)xWO3, broad spectrum response photocatalytic activities covering UV, visible and near infrared regions on degradation of Rhodamine B have been realized by P25/(NH4)xWO3 nanocomposites. Meanwhile, the stability of photocatalysts was examined by the XRD and XPS of the photocatalysts after the reaction. The results show that P25/(NH4)xWO3 photocatalysts has a brilliant application prospect in the energy utilization to solve deteriorating environmental issues.

14.
Sci Rep ; 6: 27373, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27265778

ABSTRACT

A series of smart window coated multifunctional NIR shielding-photocatalytic films were fabricated successfully through KxWO3 and F-TiO2 in a low-cost and environmentally friendly process. Based on the synergistic effect of KxWO3 and F-TiO2, the optimal proportion of KxWO3 to F-TiO2 was investigated and the FT/2KWO nanocomposite film exhibited strong near-infrared, ultraviolet light shielding ability, good visible light transmittance, high photocatalytic activity and excellent hydrophilic capacity. This film exhibited better thermal insulation capacity than ITO and higher photocatalytic activity than P25. Meanwhile, the excellent stability of this film was examined by the cycle photocatalytic degradation and thermal insulation experiments. Overall, this work is expected to provide a possibility in integrating KxWO3 with F-TiO2, so as to obtain a multifunctional NIR shielding-photocatalytic nanocomposite film in helping solve the energy crisis and deteriorating environmental issues.

15.
PLoS One ; 11(2): e0148255, 2016.
Article in English | MEDLINE | ID: mdl-26840952

ABSTRACT

INTRODUCTION: Hemophilia B is an inherited X chromosome-linked disorder characterized by impaired blood clotting owing to the absence of functional coagulation factor IX. Due to the relatively short half-life of factor IX, patients with hemophilia B require frequent factor IX infusions to maintain prophylaxis. We have developed a recombinant factor IX (rFIX) fused to the Fc region of IgG (rFIXFc) with an extended half-life in animals and humans. MATERIALS AND METHODS: Procoagulant properties of rFIXFc and rFIX (BENEFIX®) were compared to determine the effect of the Fc region on rFIXFc hemostatic function. Specifically, we assessed rFIXFc activation, intermolecular interactions within the Xase complex, inactivation by antithrombin III (AT) and thrombin generation potential compared with rFIX. We also assessed the acute and prophylactic efficacy profiles of rFIXFc and rFIX in vivo in hemophilia B mouse bleeding models. RESULTS AND CONCLUSIONS: The activation by factor XIa or factor VIIa/tissue factor, inhibition by AT, interaction profiles with phospholipids, affinities for factor VIIIa within the context of the Xase complex, and thrombin generation profiles were similar for rFIXFc and rFIX. Xase complexes formed with either molecule exhibited similar kinetic profiles for factor Xa generation. In acute efficacy models, mice infused with rFIXFc or rFIX were equally protected from bleeding. However, in prophylactic efficacy models, protection from bleeding was maintained approximately three times longer in rFIXFc-dosed mice than in those given rFIX; this prolonged efficacy correlates with the previously observed half-life extension. We conclude that rFIXFc retains critical FIX procoagulant attributes and that the extension in rFIXFc half-life translates into prolonged efficacy in hemophilia B mice.


Subject(s)
Blood Coagulation/drug effects , Coagulants/pharmacology , Factor IX/pharmacology , Hemophilia B/drug therapy , Hemorrhage/drug therapy , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , Animals , Antithrombin III/pharmacology , Blood Coagulation Tests , Disease Models, Animal , Enzyme Activation/physiology , Factor IX/genetics , Factor VIIa/pharmacology , Factor XIa/pharmacology , Half-Life , Immunoglobulin Fc Fragments/genetics , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/genetics , Thrombin/biosynthesis
16.
Cell Immunol ; 301: 30-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26775174

ABSTRACT

Anti-factor VIII (FVIII) antibodies is a major complication of FVIII replacement therapy for hemophilia A. We investigated the immune response to recombinant human factor VIII Fc (rFVIIIFc) in comparison to BDD-rFVIII and full-length rFVIII (FL-rFVIII) in hemophilia A mice. Repeated administration of therapeutically relevant doses of rFVIIIFc in these mice resulted in significantly lower antibody responses to rFVIII compared to BDD-rFVIII and FL-rFVIII and reduced antibody production upon subsequent challenge with high doses of rFVIIIFc. The induction of a tolerogenic response by rFVIIIFc was associated with higher percentage of regulatory T-cells, a lower percentage of pro-inflammatory splenic T-cells, and up-regulation of tolerogenic cytokines and markers. Disruption of Fc interactions with either FcRn or Fcγ receptors diminished tolerance induction, suggesting the involvement of these pathways. These results indicate that rFVIIIFc reduces immunogenicity and imparts tolerance to rFVIII demonstrating that recombinant therapeutic proteins may be modified to influence immunogenicity and facilitate tolerance.


Subject(s)
Factor VIII/immunology , Hemophilia A/immunology , Immune Tolerance/immunology , Immunoglobulin Fc Fragments/immunology , Recombinant Fusion Proteins/immunology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Factor VIII/pharmacology , Flow Cytometry , Humans , Immunoglobulin Fc Fragments/pharmacology , Male , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Recombinant Fusion Proteins/pharmacology , T-Lymphocytes/immunology
17.
PLoS One ; 10(4): e0124930, 2015.
Article in English | MEDLINE | ID: mdl-25905473

ABSTRACT

We recently developed a longer lasting recombinant factor VIII-Fc fusion protein, rFVIIIFc, to extend the half-life of replacement FVIII for the treatment of people with hemophilia A. In order to elucidate the biological mechanism for the elongated half-life of rFVIIIFc at a cellular level we delineated the roles of VWF and the tissue-specific expression of the neonatal Fc receptor (FcRn) in the biodistribution, clearance and cycling of rFVIIIFc. We find the tissue biodistribution is similar for rFVIIIFc and rFVIII and that liver is the major clearance organ for both molecules. VWF reduces the clearance and the initial liver uptake of rFVIIIFc. Pharmacokinetic studies in FcRn chimeric mice show that FcRn expressed in somatic cells (hepatocytes or liver sinusoidal endothelial cells) mediates the decreased clearance of rFVIIIFc, but FcRn in hematopoietic cells (Kupffer cells) does not affect clearance. Immunohistochemical studies show that when rFVIII or rFVIIIFc is in dynamic equilibrium binding with VWF, they mostly co localize with VWF in Kupffer cells and macrophages, confirming a major role for liver macrophages in the internalization and clearance of the VWF-FVIII complex. In the absence of VWF a clear difference in cellular localization of VWF-free rFVIII and rFVIIIFc is observed and neither molecule is detected in Kupffer cells. Instead, rFVIII is observed in hepatocytes, indicating that free rFVIII is cleared by hepatocytes, while rFVIIIFc is observed as a diffuse liver sinusoidal staining, suggesting recycling of free-rFVIIIFc out of hepatocytes. These studies reveal two parallel linked clearance pathways, with a dominant pathway in which both rFVIIIFc and rFVIII complexed with VWF are cleared mainly by Kupffer cells without FcRn cycling. In contrast, the free fraction of rFVIII or rFVIIIFc unbound by VWF enters hepatocytes, where FcRn reduces the degradation and clearance of rFVIIIFc relative to rFVIII by cycling rFVIIIFc back to the liver sinusoid and into circulation, enabling the elongated half-life of rFVIIIFc.


Subject(s)
Factor VIII/metabolism , Hepatocytes/metabolism , Histocompatibility Antigens Class I/physiology , Receptors, Fc/physiology , von Willebrand Factor/metabolism , Animals , Mice , Mice, Knockout , Receptors, Scavenger/metabolism , Recombinant Fusion Proteins/metabolism , Tissue Distribution
18.
Thromb Res ; 135(5): 970-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25721936

ABSTRACT

Recombinant Factor VIIa (rFVIIa) is utilized for on-demand treatment of bleeding episodes in hemophilia patients with neutralizing antibodies (inhibitors) against Factor VIII or Factor IX, but a short half-life in the circulation (~2.5hrs) limits its use in a prophylactic setting. Recombinant FVIIa variants with improved pharmacokinetic properties may enable improved treatment and prevention of bleeding episodes in the inhibitor population. In this study we describe recombinant FVIIaFc (rFVIIaFc), a recombinant Fc-fusion protein generated to utilize the neonatal Fc receptor (FcRn)-mediated recycling pathway that protects immunoglobulin G from catabolism. On the basis of activity, rFVIIaFc exhibited a 5.5-fold extension in terminal half-life in hemophilia A mice compared to rFVIIa. The potency of rFVIIaFc was comparable to that of rFVIIa in thrombin generation assay and ROTEM. In agreement with these data, rFVIIaFc and rFVIIa showed similar acute efficacy at comparable molar doses in the tail clip bleeding model in hemophilia A mice. Taken together, these studies demonstrate enhanced pharmacokinetics and similar hemostatic properties for rFVIIaFc compared to rFVIIa.


Subject(s)
Factor VIIa/pharmacokinetics , Animals , Disease Models, Animal , Factor VIIa/genetics , Factor VIIa/therapeutic use , Half-Life , Hemophilia A/blood , Hemophilia A/drug therapy , Hemophilia A/genetics , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/therapeutic use , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prothrombin Time , Receptors, Fc/deficiency , Receptors, Fc/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/therapeutic use
19.
PLoS One ; 9(11): e113600, 2014.
Article in English | MEDLINE | ID: mdl-25415306

ABSTRACT

Recombinant factor VIII Fc (rFVIIIFc) is a fusion protein consisting of a single B-domain-deleted (BDD) FVIII linked recombinantly to the Fc domain of human IgG1 to extend half-life. To determine if rFVIIIFc could be further improved by maintaining the heavy and light chains within a contiguous single chain (SC), we evaluated the activity and function of SC rFVIIIFc, an isoform that is not processed at residue R1648. SC rFVIIIFc showed equivalent activity in a chromogenic assay compared to rFVIIIFc, but approximately 40% activity by the one-stage clotting assay in the presence of von Willebrand Factor (VWF), with full activity in the absence of VWF. Moreover, SC rFVIIIFc demonstrated markedly delayed thrombin-mediated release from VWF, but an activity similar to that of rFVIIIFc upon activation in FXa generation assays. Therefore, the apparent reduction in specific activity in the aPTT assay appears to be primarily due to delayed release of FVIII from VWF. To assess whether stability and activity of SC rFVIIIFc were affected in vivo, a tail vein transection model in Hemophilia A mice was utilized. The results demonstrated similar pharmacokinetic profiles and comparable efficacy for SC rFVIIIFc and rFVIIIFc. Thus, while the single chain configuration did not promote enhanced half-life, it reduced the rate of release of FVIII from VWF required for activation. This impaired release may underlie the observed reduction in the one-stage clotting assay, but does not appear to affect the physiological activity of SC rFVIIIFc.


Subject(s)
Factor VIII/genetics , Factor VIII/pharmacokinetics , Hemophilia A/drug therapy , Recombinant Fusion Proteins/pharmacokinetics , Animals , Cloning, Molecular/methods , Disease Models, Animal , Factor VIII/chemistry , Factor VIII/therapeutic use , Half-Life , Hemophilia A/blood , Hemorrhage , Humans , In Vitro Techniques , Male , Mice , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/therapeutic use , Thrombin/metabolism , von Willebrand Factor/metabolism
20.
Blood ; 119(13): 3024-30, 2012 Mar 29.
Article in English | MEDLINE | ID: mdl-22246033

ABSTRACT

Despite proven benefits, prophylactic treatment for hemophilia A is hampered by the short half-life of factor VIII. A recombinant factor VIII-Fc fusion protein (rFVIIIFc) was constructed to determine the potential for reduced frequency of dosing. rFVIIIFc has an ∼ 2-fold longer half-life than rFVIII in hemophilia A (HemA) mice and dogs. The extension of rFVIIIFc half-life requires interaction of Fc with the neonatal Fc receptor (FcRn). In FcRn knockout mice, the extension of rFVIIIFc half-life is abrogated, and is restored in human FcRn transgenic mice. The Fc fusion has no impact on FVIII-specific activity. rFVIIIFc has comparable acute efficacy as rFVIII in treating tail clip injury in HemA mice, and fully corrects whole blood clotting time (WBCT) in HemA dogs immediately after dosing. Furthermore, consistent with prolonged half-life, rFVIIIFc shows 2-fold longer prophylactic efficacy in protecting HemA mice from tail vein transection bleeding induced 24-48 hours after dosing. In HemA dogs, rFVIIIFc also sustains partial correction of WBCT 1.5- to 2-fold longer than rFVIII. rFVIIIFc was well tolerated in both species. Thus, the rescue of FVIII by Fc fusion to provide prolonged protection presents a novel pathway for FVIII catabolism, and warrants further investigation.


Subject(s)
Factor VIII/pharmacokinetics , Hemophilia A/metabolism , Histocompatibility Antigens Class I/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Animals , Coagulants/pharmacokinetics , Coagulants/therapeutic use , Disease Models, Animal , Dog Diseases/drug therapy , Dog Diseases/metabolism , Dogs , Factor VIII/chemistry , Factor VIII/genetics , Factor VIII/therapeutic use , HEK293 Cells , Half-Life , Hemophilia A/drug therapy , Hemophilia A/pathology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/therapeutic use , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Fc/chemistry , Receptors, Fc/metabolism , Receptors, Fc/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Whole Blood Coagulation Time
SELECTION OF CITATIONS
SEARCH DETAIL
...