Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35591180

ABSTRACT

The majority of digital sensors rely on von Neumann architecture microprocessors to process sampled data. When the sampled data require complex computation for 24×7, the processing element will a consume significant amount of energy and computation resources. Several new sensing algorithms use deep neural network algorithms and consume even more computation resources. High resource consumption prevents such systems for 24×7 deployment although they can deliver impressive results. This work adopts a Computing-In-Memory (CIM) device, which integrates a storage and analog processing unit to eliminate data movement, to process sampled data. This work designs and evaluates the CIM-based sensing framework for human pose recognition. The framework consists of uncertainty-aware training, activation function design, and CIM error model collection. The evaluation results show that the framework can improve the detection accuracy of three poses classification on CIM devices using binary weights from 33.3% to 91.5% while that on ideal CIM is 92.1%. Although on digital systems the accuracy is 98.7% with binary weight and 99.5% with floating weight, the energy consumption of executing 1 convolution layer on a CIM device is only 30,000 to 50,000 times less than the digital sensing system. Such a design can significantly reduce power consumption and enables battery-powered always-on sensors.


Subject(s)
Algorithms , Neural Networks, Computer , Humans
2.
Front Psychiatry ; 12: 655292, 2021.
Article in English | MEDLINE | ID: mdl-33935840

ABSTRACT

Backgrounds: Reduced brain cortical activity over the frontotemporal regions measured by near infrared spectroscopy (NIRS) has been reported in patients with first-episode schizophrenia (FES). This study aimed to differentiate between patients with FES and healthy controls (HCs) on basis of the frontotemporal activity measured by NIRS with a support vector machine (SVM) and deep neural network (DNN) classifier. In addition, we compared the accuracy of performance of SVM and DNN. Methods: In total, 33 FES patients and 34 HCs were recruited. Their brain cortical activities were measured using NIRS while performing letter and category versions of verbal fluency tests (VFTs). The integral and centroid values of brain cortical activity in the bilateral frontotemporal regions during the VFTs were selected as features in SVM and DNN classifier. Results: Compared to HCs, FES patients displayed reduced brain cortical activity over the bilateral frontotemporal regions during both types of VFTs. Regarding the classifier performance, SVM reached an accuracy of 68.6%, sensitivity of 70.1%, and specificity of 64.6%, while DNN reached an accuracy of 79.7%, sensitivity of 88.8%, and specificity of 74.9% in the classification of FES patients and HCs. Conclusions: Compared to findings of previous structural neuroimaging studies, we found that using DNN to measure the NIRS signals during the VFTs to differentiate between FES patients and HCs could achieve a higher accuracy, indicating that NIRS can be used as a potential marker to classify FES patients from HCs. Future additional independent datasets are needed to confirm the validity of our model.

SELECTION OF CITATIONS
SEARCH DETAIL
...