Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Res ; 43(9): 4023-4030, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648321

ABSTRACT

BACKGROUND/AIM: Gonadotropin-releasing hormone 2 (GNRH2) is a poorly-studied peptide hormone that is widely distributed in the central nervous system and expressed in peripheral tissues of mammals. The non-synonymous rs6051545 variant in GNRH2 (A16V) has been linked to higher serum testosterone concentrations. This study investigated whether the A16V variant is associated with altered androgen-deprivation therapy (ADT) progression-free survival (PFS) and overall survival (OS). PATIENTS AND METHODS: We examined the expression of GNRH2 in prostate tissue microarrays comprising normal tissue, prostatic hyperplasia, and prostate cancer using immunofluorescence. We also evaluated the GNRH2 genotype in 131 patients with prostate cancer who received ADT and compared PFS and OS between the variant and wild-type genotypes. RESULTS: GNRH2 was detected in all prostate tissues, although expression did not vary with Gleason grade or disease stage (p=0.71). The GNRH2 A16V genotype was not associated with PFS or OS; however, univariate and multivariate analyses revealed Gleason score and definitive local therapy were each associated with PFS (p≤0.0074), whereas age and Gleason score were associated with OS (p≤0.0046). CONCLUSION: GNRH2 is expressed in normal, hyperplastic, and neoplastic prostate tissues; the A16V variant is not related to treatment outcome or survival.


Subject(s)
Prostatic Hyperplasia , Prostatic Neoplasms , Animals , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Androgen Antagonists/therapeutic use , Gonadotropin-Releasing Hormone/genetics , Androgens , Mammals
2.
Plant Physiol ; 192(1): 633-647, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36782397

ABSTRACT

Phytophthora sojae causes Phytophthora root and stem rot disease of soybean (Glycine max), leading to huge annual yield loss worldwide, but resistance to Phytophthora sojae (Rps) genes remains elusive. Soybean cultivar "Yudou 29" is resistant to P. sojae strain PsMC1, and this study aimed to clone, identify, and characterize the Rps gene in Yudou 29 (RpsYD29) and clarify its functional mechanism. We map-based cloned RpsYD29 (ZINC FINGER PROTEIN03, GmZFP03) using the families of a cross between Yudou 29 and a P. sojae-susceptible soybean cultivar "Jikedou 2". P. sojae resistance of GmZFP03 was functionally validated by stable soybean genetic transformation and allele-phenotype association analysis. GmZFP03 was identified as a C2H2-type zinc finger protein transcription factor, showing 4 amino acid residue polymorphisms (V79F, G122-, G123-, and D125V) and remarkably different expression patterns between resistant and susceptible soybeans. Notably boosted activity and gene expression of superoxide dismutase (SOD) in resistant-type GmZFP03-expressed transgenic soybean, substantial enhancement of P. sojae resistance of wild-type soybean by exogenous SOD treatment, and GmZFP03 binding to and activation of 2 SOD1 (Glyma.03g242900 and Glyma.19g240400) promoters demonstrated the involvement of SOD1s in GmZFP03-mediated resistance to P. sojae strain PsMC1. Thus, this study cloned the soybean P. sojae-resistant GmZFP03, the product of which specifically targets 2 SOD1 promoters. GmZFP03 can be directly used for precise P. sojae-resistance soybean breeding.


Subject(s)
Glycine max , Phytophthora , Glycine max/genetics , Superoxides , Disease Resistance/genetics , Phytophthora/physiology , Superoxide Dismutase-1 , Plant Breeding , Plant Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...