Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(18): 6588-93, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24753603

ABSTRACT

Targeted MRI contrast agents have proven useful in research and clinical studies for highlighting specific metabolites and biomarkers [Davies GL, et al. (2013) Chem Commun (Camb) 49(84):9704-9721] but their applicability in serial imaging is limited owing to a changing concentration postinjection. Solid enclosures have previously been used to keep the local concentration of contrast agent constant, but the need to surgically implant these devices limits their use [Daniel K, et al. (2009) Biosens Bioelectron 24(11):3252-3257]. This paper describes a novel class of contrast agent that comprises a responsive material for contrast generation and an injectable polymeric matrix for structural support. Using this principle, we have designed a contrast agent sensitive to oxygen, which is composed of dodecamethylpentasiloxane as the responsive material and polydimethylsiloxane as the matrix material. A rodent inspired-gas model demonstrated that these materials are functionally stable in vivo for at least 1 mo, which represents an order of magnitude improvement over an injection of liquid siloxane [Kodibagkar VD, et al. (2006) Magn Reson Med 55(4):743-748]. We also observed minimal adverse tissue reactions or migration of contrast agents from the initial injection site. This class of contrast agents, thus, represented a new and complementary method to monitor chronic diseases by MRI.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Oxygen/analysis , Siloxanes/chemistry , Animals , Biosensing Techniques/methods , Contrast Media/administration & dosage , Dimethylpolysiloxanes/chemistry , Humans , Microspheres , Rats , Rats, Sprague-Dawley , Siloxanes/administration & dosage
2.
J Am Chem Soc ; 129(22): 7136-44, 2007 Jun 06.
Article in English | MEDLINE | ID: mdl-17503820

ABSTRACT

Applications of metal-organic frameworks (MOFs) require close correlation between their structure and function. We describe the preparation and characterization of two zinc MOFs based on a flexible and emissive linker molecule, stilbene, which retains its luminescence within these solid materials. Reaction of trans-4,4'-stilbene dicarboxylic acid and zinc nitrate in N,N-dimethylformamide (DMF) yielded a dense 2-D network, 1, featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in N,N-diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure, 2. This framework consists of two interpenetrating cubic lattices, each featuring basic zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both 1 and 2 correlate with the local ligand environments observed in the crystal structures. Steady-state and time-resolved spectroscopic measurements reveal that the stilbene linkers in the dense structure 1 exhibit a small degree of interchromophore coupling. In contrast, the stilbenoid units in 2 display very little interaction in this low-density 3-D framework, with excitation and emission spectra characteristic of monomeric stilbenes, similar to the dicarboxylic acid in dilute solution. In both cases, the rigidity of the stilbene linker increases upon coordination to the inorganic units through inhibition of torsion about the central ethylene bond, resulting in luminescent crystals with increased emission lifetimes compared to solutions of trans-stilbene. The emission spectrum of 2 is found to depend on the nature of the incorporated solvent molecules, suggesting use of this or related materials in sensor applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...