Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Robot Surg ; 9(3): 223-33, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26531203

ABSTRACT

In transoral robotic surgery preoperative image data do not reflect large deformations of the operative workspace from perioperative setup. To address this challenge, in this study we explore image guidance with cone beam computed tomographic angiography to guide the dissection of critical vascular landmarks and resection of base-of-tongue neoplasms with adequate margins for transoral robotic surgery. We identify critical vascular landmarks from perioperative c-arm imaging to augment the stereoscopic view of a da Vinci si robot in addition to incorporating visual feedback from relative tool positions. Experiments resecting base-of-tongue mock tumors were conducted on a series of ex vivo and in vivo animal models comparing the proposed workflow for video augmentation to standard non-augmented practice and alternative, fluoroscopy-based image guidance. Accurate identification of registered augmented critical anatomy during controlled arterial dissection and en bloc mock tumor resection was possible with the augmented reality system. The proposed image-guided robotic system also achieved improved resection ratios of mock tumor margins (1.00) when compared to control scenarios (0.0) and alternative methods of image guidance (0.58). The experimental results show the feasibility of the proposed workflow and advantages of cone beam computed tomography image guidance through video augmentation of the primary stereo endoscopy as compared to control and alternative navigation methods.


Subject(s)
Cone-Beam Computed Tomography/methods , Oral Surgical Procedures/methods , Robotic Surgical Procedures/methods , Animals , Feasibility Studies , Phantoms, Imaging , Swine , Tongue/surgery , User-Computer Interface
2.
Int J Med Robot ; 11(2): 256-67, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25069602

ABSTRACT

BACKGROUND: Adequate resection of oropharyngeal neoplasms with transoral robotic surgery (TORS) poses multiple challenges, including difficulty with access, inability to palpate the tumor, loss of landmarks, and intraoperative patient positioning with mouth retractor and tongue extended creating significant tissue distortion from preoperative imaging. METHODS: This study evaluates a workflow integrating intraoperative cone beam computed tomography (CBCT) for image-guided TORS through robotic experimentation locating 8-10 embedded targets in five porcine tongues and a cadaveric head phantom, conducted under various modes of visualization and integration of preoperative/intraoperative imaging. RESULTS: A statistically significant improvement in mean target localization error was achieved for both the porcine tongue ((9.8 ± 4.0) mm vs. (5.3 ± 1.3) mm, P-value = 0.0151) and cadaver ((11.2 ± 5.0) mm vs. (5.8 ± 2.5) mm P-value = 0.0189) in experiments comparing scenarios simulating current standard-of-care practice and the proposed image guidance system. CONCLUSION: Intraoperative image guidance with augmentation of critical surgical structures has the potential to improve target localization for TORS.


Subject(s)
Oropharyngeal Neoplasms/diagnostic imaging , Oropharyngeal Neoplasms/surgery , Robotic Surgical Procedures/methods , Surgery, Computer-Assisted/methods , Animals , Cadaver , Cone-Beam Computed Tomography , Humans , Models, Anatomic , Phantoms, Imaging , Swine , Tongue/diagnostic imaging , Tongue/surgery , Video-Assisted Surgery/methods
3.
JAMA Otolaryngol Head Neck Surg ; 140(3): 208-14, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24457635

ABSTRACT

IMPORTANCE: To our knowledge, this is the first reported cadaveric feasibility study of a master-slave-assisted cochlear implant procedure in the otolaryngology-head and neck surgery field using the da Vinci Si system (da Vinci Surgical System; Intuitive Surgical, Inc). We describe the surgical workflow adaptations using a minimally invasive system and image guidance integrating intraoperative cone beam computed tomography through augmented reality. OBJECTIVE: To test the feasibility of da Vinci Si-assisted cochlear implant surgery with augmented reality, with visualization of critical structures and facilitation with precise cochleostomy for electrode insertion. DESIGN AND SETTING: Cadaveric case study of bilateral cochlear implant approaches conducted at Intuitive Surgical Inc, Sunnyvale, California. INTERVENTIONS: Bilateral cadaveric mastoidectomies, posterior tympanostomies, and cochleostomies were performed using the da Vinci Si system on a single adult human donor cadaveric specimen. MAIN OUTCOMES AND MEASURES: Radiographic confirmation of successful cochleostomies, placement of a phantom cochlear implant wire, and visual confirmation of critical anatomic structures (facial nerve, cochlea, and round window) in augmented stereoendoscopy. RESULTS: With a surgical mean time of 160 minutes per side, complete bilateral cochlear implant procedures were successfully performed with no violation of critical structures, notably the facial nerve, chorda tympani, sigmoid sinus, dura, or ossicles. Augmented reality image overlay of the facial nerve, round window position, and basal turn of the cochlea was precise. Postoperative cone beam computed tomography scans confirmed successful placement of the phantom implant electrode array into the basal turn of the cochlea. CONCLUSIONS AND RELEVANCE: To our knowledge, this is the first study in the otolaryngology-head and neck surgery literature examining the use of master-slave-assisted cochleostomy with augmented reality for cochlear implants using the da Vinci Si system. The described system for cochleostomy has the potential to improve the surgeon's confidence, as well as surgical safety, efficiency, and precision by filtering tremor. The integration of augmented reality may be valuable for surgeons dealing with complex cases of congenital anatomic abnormality, for revision cochlear implant with distorted anatomy and poorly pneumatized mastoids, and as a method of interactive teaching. Further research into the cost-benefit ratio of da Vinci Si-assisted otologic surgery, as well as refinements of the proposed workflow, are required before considering clinical studies.


Subject(s)
Cochlear Implants , Hearing Loss/surgery , Otologic Surgical Procedures/methods , Robotics/instrumentation , Surgery, Computer-Assisted/methods , Cadaver , Cone-Beam Computed Tomography , Feasibility Studies , Hearing Loss/diagnostic imaging , Humans , Temporal Bone/diagnostic imaging , Temporal Bone/surgery
4.
J Robot Surg ; 7(3): 217-25, 2013 Sep.
Article in English | MEDLINE | ID: mdl-25525474

ABSTRACT

This paper presents the development and evaluation of video augmentation on the stereoscopic da Vinci S system with intraoperative image guidance for base of tongue tumor resection in transoral robotic surgery (TORS). Proposed workflow for image-guided TORS begins by identifying and segmenting critical oropharyngeal structures (e.g., the tumor and adjacent arteries and nerves) from preoperative computed tomography (CT) and/or magnetic resonance (MR) imaging. These preoperative planned data can be deformably registered to the intraoperative endoscopic view using mobile C-arm cone-beam computed tomography (CBCT) [1, 2]. Augmentation of TORS endoscopic video defining surgical targets and critical structures has the potential to improve navigation, spatial orientation, and confidence in tumor resection. Experiments in animal specimens achieved statistically significant improvement in target localization error when comparing the proposed image guidance system to simulated current practice.

5.
Article in English | MEDLINE | ID: mdl-37476578

ABSTRACT

Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in real-time, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7±0.3) pixels and mean target registration error of (2.3±1.5)mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (un-augmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

SELECTION OF CITATIONS
SEARCH DETAIL
...