Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Plant Cell Rep ; 43(2): 55, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315238

ABSTRACT

KEY MESSAGE: ABI5 functions in ABA-mediated anthocyanin accumulation in plant response to low phosphate. Low phosphate (LP)-induced anthocyanin biosynthesis and accumulation play an important role in plant adaptive response to phosphate starvation conditions. However, whether and how the stress phytohormone abscisic acid (ABA) participates in LP-induced anthocyanin accumulation remain elusive. Here, we report that ABA is required for LP-induced anthocyanin accumulation in Arabidopsis thaliana. Disrupting ABA DEFICIENT2 (ABA2), a key ABA-biosynthetic gene, or BETA-GLUCOSIDASE1 (BG1), a major gene implicated in converting conjugated ABA to active ABA, significantly impairs LP-induced anthocyanin accumulation, as LP-induced expression of the anthocyanin-biosynthetic genes Chalcone Synthase (CHS) is dampened in the aba2 and bg1 mutant. In addition, LP-induced anthocyanin accumulation is defective in the mutants of ABA signaling pathway, including ABA receptors, ABA Insensitive2, and the transcription factors ABA Insensitive5 (ABI5), suggesting a role of ABI5 in ABA-mediated upregulation of anthocyanin-biosynthetic genes in plant response to LP. Indeed, LP-induced expression of CHS is repressed in the abi5-7 mutant but further promoted in the ABI5-overexpressing plants compared to the wild-type. Moreover, ABI5 can bind to and transcriptionally activate CHS, and the defectiveness of LP-induced anthocyanin accumulation in abi5-7 can be restored by overexpressing CHS. Collectively, our findings illustrates that ABI5 functions in ABA-mediated LP-induced anthocyanin accumulation in Arabidopsis.


Subject(s)
Anthocyanins , Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Abscisic Acid/metabolism , Anthocyanins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Germination/genetics , Seeds/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Heliyon ; 10(4): e25989, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390142

ABSTRACT

Image-based gauging stations offer the potential for substantial enhancement in the monitoring networks of river water levels. Nonetheless, the majority of camera gauges fall short in delivering reliable and precise measurements because of the fluctuating appearance of water in the rivers over the course of the year. In this study, we introduce a method for measuring water levels in rivers using both the traditional continuous image subtraction (CIS) approach and a SegNet neural network based on deep learning computer vision. The historical images collected from on-site investigations were employed to train three neural networks (SegNet, U-Net, and FCN) in order to evaluate their effectiveness, overall performance, and reliability. The research findings demonstrated that the SegNet neural network outperformed the CIS method in accurately measuring water levels. The root mean square error (RMSE) between the water level measurements obtained by the SegNet neural network and the gauge station's readings ranged from 0.013 m to 0.066 m, with a high correlation coefficient of 0.998. Furthermore, the study revealed that the performance of the SegNet neural network in analyzing water levels in rivers improved with the inclusion of a larger number of images, diverse image categories, and higher image resolutions in the training dataset. These promising results emphasize the potential of deep learning computer vision technology, particularly the SegNet neural network, to enhance water level measurement in rivers. Notably, the quality and diversity of the training dataset play a crucial role in optimizing the network's performance. Overall, the application of this advanced technology holds great promise for advancing water level monitoring and management in river systems.

3.
Plant Commun ; : 100852, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38409783

ABSTRACT

Climate change is resulting in more frequent and rapidly changing temperatures at both extremes that severely affect the growth and production of plants, particularly crops. Oxidative stress caused by high temperatures is one of the most damaging factors for plants. However, the role of hydrogen peroxide (H2O2) in modulating plant thermotolerance is largely unknown, and the regulation of photorespiration essential for C3 species remains to be fully clarified. Here, we report that heat stress promotes H2O2 accumulation in chloroplasts and that H2O2 stimulates sulfenylation of the chloroplast-localized photorespiratory enzyme 2-phosphoglycolate phosphatase 1 (PGLP1) at cysteine 86, inhibiting its activity and promoting the accumulation of the toxic metabolite 2-phosphoglycolate. We also demonstrate that PGLP1 has a positive function in plant thermotolerance, as PGLP1 antisense lines have greater heat sensitivity and PGLP1-overexpressing plants have higher heat-stress tolerance than the wild type. Together, our results demonstrate that heat-induced H2O2 in chloroplasts sulfenylates and inhibits PGLP1 to modulate plant thermotolerance. Furthermore, targeting CATALASE2 to chloroplasts can largely prevent the heat-induced overaccumulation of H2O2 and the sulfenylation of PGLP1, thus conferring thermotolerance without a plant growth penalty. These findings reveal that heat-induced H2O2 in chloroplasts is important for heat-caused plant damage.

4.
J Integr Plant Biol ; 66(3): 330-367, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38116735

ABSTRACT

Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.


Subject(s)
Oxidative Stress , Plants , Reactive Oxygen Species/metabolism , Plants/metabolism , Stress, Physiological , Antioxidants/metabolism
5.
Plant Cell Environ ; 47(3): 799-816, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38111215

ABSTRACT

Phosphorus (P) is a crucial macronutrient for plant growth, development, and reproduction. The effects of low P (LP) stress on leaf senescence and the role of PHR1 in LP-induced leaf senescence are still unknown. Here, we report that PHR1 plays a crucial role in LP-induced leaf senescence, showing delayed leaf senescence in phr1 mutant and accelerated leaf senescence in 35S:PHR1 transgenic Arabidopsis under LP stress. The transcriptional profiles indicate that 763 differentially expressed SAGs (DE-SAGs) were upregulated and 134 DE-SAGs were downregulated by LP stress. Of the 405 DE-SAGs regulated by PHR1, 27 DE-SAGs were involved in P metabolism and transport. PHR1 could bind to the promoters of six DE-SAGs (RNS1, PAP17, SAG113, NPC5, PLDζ2, and Pht1;5), and modulate them in LP-induced senescing leaves. The analysis of RNA content, phospholipase activity, acid phosphatase activity, total P and phosphate content also revealed that PHR1 promotes P liberation from senescing leaves and transport to young tissues under LP stress. Our results indicated that PHR1 is one of the crucial modulators for P recycling and redistribution under LP stress, and the drastic decline of P level is at least one of the causes of early senescence in P-deficient leaves.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Phosphorus/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Senescence , Transcription Factors/metabolism , Phosphates/metabolism , Plant Leaves/metabolism , Homeostasis , Gene Expression Regulation, Plant
6.
Viruses ; 15(12)2023 11 25.
Article in English | MEDLINE | ID: mdl-38140556

ABSTRACT

There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/physiology , Hepatitis B, Chronic/drug therapy , Hepatitis B/drug therapy , Hepatitis B/genetics , DNA, Circular/genetics , DNA, Viral/genetics , Virus Replication/genetics
7.
Mar Pollut Bull ; 193: 115220, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37390625

ABSTRACT

Modeling fecal contamination in water bodies is of importance for microbiological risk assessment and management. This study investigated the transport of fecal coliform (e.g., up to 2.1 × 106 CFU/100 ml at the Zhongshan Bridge due to the main point source from the Xinhai Bridge) in the Danshuei River estuarine system, Taiwan with the main focus on assessing model uncertainty due to three relevant parameters for the microbial decay process. First, a 3D hydrodynamic-fecal coliform model (i.e., SCHISM-FC) was developed and rigorously validated against the available data of water level, velocity, salinity, suspended sediment and fecal coliform measured in 2019. Subsequently, the variation ranges of decay reaction parameters were considered from several previous studies and properly determined using the Monte Carlo simulations. Our analysis showed that the constant ratio of solar radiation (α) as well as the settling velocity (vs) had the normally-distributed variations while the attachment fraction of fecal coliform bacteria (Fp) was best fitted by the Weibull distribution. The modeled fecal coliform concentrations near the upstream (or downstream) stations were less sensitive to those parameter variations (see the smallest width of confidence interval about 1660 CFU/100 ml at the Zhongzheng Bridge station) due to the dominant effects of inflow discharge (or tides). On the other hand, for the middle parts of Danshuei River where complicated hydrodynamic circulation and decay reaction occurred, the variations of parameters led to much larger uncertainty in modeled fecal coliform concentration (see a wider confidence interval about 117,000 CFU/100 ml at the Bailing Bridge station). Overall, more detailed information revealed in this study would be helpful while the environmental authority needs to develop a proper strategy for water quality assessment and management. Owing to the uncertain decay parameters, for instance, the modeled fecal coliform impacts at Bailing Bridge over the study period showed a 25 % difference between the lowest and highest concentrations at several moments. For the detection of pollution occurrence, the highest to lowest probabilities for a required fecal coliform concentration (e.g., 260,000 CFU/100 ml over the environmental regulation) at Bailing Bridge was possibly greater than three.


Subject(s)
Environmental Monitoring , Hydrodynamics , Environmental Monitoring/methods , Uncertainty , Enterobacteriaceae , Rivers/microbiology , Gram-Negative Bacteria , Feces/microbiology , Water Microbiology
8.
Plant Cell ; 35(7): 2570-2591, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37040621

ABSTRACT

SALT OVERLY SENSITIVE1 (SOS1) is a key component of plant salt tolerance. However, how SOS1 transcription is dynamically regulated in plant response to different salinity conditions remains elusive. Here, we report that C-type Cyclin1;1 (CycC1;1) negatively regulates salt tolerance by interfering with WRKY75-mediated transcriptional activation of SOS1 in Arabidopsis (Arabidopsis thaliana). Disruption of CycC1;1 promotes SOS1 expression and salt tolerance in Arabidopsis because CycC1;1 interferes with RNA polymerase II recruitment by occupying the SOS1 promoter. Enhanced salt tolerance of the cycc1;1 mutant was completely compromised by an SOS1 mutation. Moreover, CycC1;1 physically interacts with the transcription factor WRKY75, which can bind to the SOS1 promoter and activate SOS1 expression. In contrast to the cycc1;1 mutant, the wrky75 mutant has attenuated SOS1 expression and salt tolerance, whereas overexpression of SOS1 rescues the salt sensitivity of wrky75. Intriguingly, CycC1;1 inhibits WRKY75-mediated transcriptional activation of SOS1 via their interaction. Thus, increased SOS1 expression and salt tolerance in cycc1;1 were abolished by WRKY75 mutation. Our findings demonstrate that CycC1;1 forms a complex with WRKY75 to inactivate SOS1 transcription under low salinity conditions. By contrast, under high salinity conditions, SOS1 transcription and plant salt tolerance are activated at least partially by increased WRKY75 expression but decreased CycC1;1 expression.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Salt Tolerance/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
9.
New Phytol ; 237(6): 2104-2117, 2023 03.
Article in English | MEDLINE | ID: mdl-36495066

ABSTRACT

Fatty acid (FA) ß-oxidation provides energy for oil seed germination but also produces massive byproduct reactive oxygen species (ROS), posing potential oxidative damage to plant cells. How plants overcome the contradiction between energy supply and ROS production during seed germination remains unclear. In this study, we identified an Arabidopsis mvs1 (methylviologen-sensitive) mutant that was hypersensitive to ROS and caused by a missense mutation (G1349 substituted as A) of a cytochrome P450 gene, CYP77A4. CYP77A4 was highly expressed in germinating seedling cotyledons, and its protein is localized in the endoplasmic reticulum. As CYP77A4 catalyzes the epoxidation of unsaturated FA, disruption of CYP77A4 resulted in increased unsaturated FA abundance and over accumulated ROS in the mvs1 mutant. Consistently, scavenging excess ROS or blocking FA ß-oxidation could repress the ROS overaccumulation and hypersensitivity in the mvs1 mutant. Furthermore, H2 O2 transcriptionally upregulated CYP77A4 expression and post-translationally modified CYP77A4 by sulfenylating its Cysteine-456, which is necessary for CYP77A4's role in modulating FA abundance and ROS production. Together, our study illustrates that CYP77A4 mediates direct balancing of lipid mobilization and ROS production by the epoxidation of FA during seed germination.


Subject(s)
Arabidopsis , Germination , Reactive Oxygen Species/metabolism , Germination/genetics , Fatty Acids/metabolism , Lipid Mobilization , Seeds/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Catalysis , Gene Expression Regulation, Plant
10.
Dev Cell ; 57(24): 2679-2682, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36538893

ABSTRACT

In this selection, we celebrate the art of science by highlighting some of the submitted cover images from the past year. In this collection, our authors share the stories behind their inspiration for how to portray their science to captivate a broader audience.

11.
World J Gastroenterol ; 28(26): 3279-3281, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-36051333

ABSTRACT

In recent years, the interaction between the gut microflora and liver diseases has attracted much attention. The intestinal microflora is composed of bacteria, archaea, fungi and viruses. There are few studies on the intestinal virome, and whether it has a causal relationship with bacterial changes in the gut is still unclear. However, it is undeniable that the intestinal virome is also a very important portion of the blueprint for the development of liver diseases and the diagnosis and therapeutic modalities in the future.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Viruses , Bacteria , Humans , Non-alcoholic Fatty Liver Disease/etiology , Virome
12.
Plant Physiol ; 190(4): 2812-2827, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36173345

ABSTRACT

Regulation of seed germination is important for plant survival and propagation. ABSCISIC ACID (ABA) INSENSITIVE5 (ABI5), the central transcription factor in the ABA signaling pathway, plays a fundamental role in the regulation of ABA-responsive gene expression during seed germination; however, how ABI5 transcriptional activation activity is regulated remains to be elucidated. Here, we report that C-type Cyclin1;1 (CycC1;1) is an ABI5-interacting partner affecting the ABA response and seed germination in Arabidopsis (Arabidopsis thaliana). The CycC1;1 loss-of-function mutant is hypersensitive to ABA, and this phenotype was rescued by mutation of ABI5. Moreover, CycC1;1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes including ABI5 itself by occupying their promoters and disrupting RNA polymerase II recruitment; thus the cycc1;1 mutant shows increased expression of ABI5 and genes downstream of ABI5. Furthermore, ABA reduces the interaction between CycC1;1 and ABI5, while phospho-mimic but not phospho-dead mutation of serine-42 in ABI5 abolishes CycC1;1 interaction with ABI5 and relieves CycC1;1 inhibition of ABI5-mediated transcriptional activation of downstream target genes. Together, our study illustrates that CycC1;1 negatively modulates the ABA response by interacting with and inhibiting ABI5, while ABA relieves the CycC1;1 interaction with and inhibition of ABI5 to activate ABI5 activity for the ABA response, thereby inhibiting seed germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Germination , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Seeds/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Arabidopsis/metabolism
13.
Dev Cell ; 57(15): 1883-1898.e5, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35809562

ABSTRACT

H2O2 affects the expression of genes that are involved in plant responses to diverse environmental stresses; however, the underlying mechanisms remain elusive. Here, we demonstrate that H2O2 enhances plant freezing tolerance through its effect on a protein product of low expression of osmotically responsive genes2 (LOS2). LOS2 is translated into a major product, cytosolic enolase2 (ENO2), and sometimes an alternative product, the transcription repressor c-Myc-binding protein (MBP-1). ENO2, but not MBP-1, promotes cold tolerance by binding the promoter of C-repeat/DRE binding factor1 (CBF1), a central transcription factor in plant cold signaling, thus activating its expression. Overexpression of CBF1 restores freezing sensitivity of a LOS2 loss-of-function mutant. Furthermore, cold-induced H2O2 increases nuclear import and transcriptional binding activity of ENO2 by sulfenylating cysteine 408 and thereby promotes its oligomerization. Collectively, our results illustrate how H2O2 activates plant cold responses by sulfenylating ENO2 and promoting its oligomerization, leading to enhanced nuclear translocation and transcriptional activation of CBF1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cold Temperature , Freezing , Gene Expression Regulation, Plant , Hydrogen Peroxide/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Plant J ; 111(1): 269-281, 2022 07.
Article in English | MEDLINE | ID: mdl-35506310

ABSTRACT

Low phosphate (LP) in soil is a common nutrient stress that severely restricts agricultural production, but the role, if any, of the major stress phytohormone abscisic acid (ABA) in plant phosphate (Pi) starvation responses remains elusive. Here, we report that LP-induced ABA accumulation promotes Pi uptake in an ABA INSENSITIVE5 (ABI5)-dependent manner in Arabidopsis thaliana. LP significantly activated plant ABA biosynthesis, metabolism, and stress responses, suggesting a role of ABA in the plant response to Pi availability. LP-induced ABA accumulation and expression of two major high-affinity phosphate transporter genes PHOSPHATE TRANSPORTER1;1/1;4 (PHT1;1/1;4) were severely impaired in a mutant lacking BETA-GLUCOSIDASE1 (BG1), which converts conjugated ABA to active ABA, and the mutant had shorter roots and less Pi content than wild-type plants under LP conditions. Moreover, a mutant of ABI5, which encodes a central transcription factor in ABA signaling, also exhibited suppressed root elongation and had reduced Pi content under LP conditions. ABI5 facilitated Pi acquisition by activating the expression of PHT1;1 by directly binding to its promoter, while overexpression of PHT1;1 completely rescued its Pi content under LP conditions. Together, our findings illustrate a molecular mechanism by which ABA positively modulates phosphate acquisition through ABI5 in the Arabidopsis response to phosphate deficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Phosphates/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Plant J ; 111(1): 72-84, 2022 07.
Article in English | MEDLINE | ID: mdl-35436372

ABSTRACT

High-affinity phosphate (Pi) transporters (PHTs) PHT1;1 and PHT1;4 are necessary for plant root Pi uptake especially under Pi-deficient conditions, but how their protein stability is modulated remains elusive. Here, we identified a Ttransfer DNA insertion mutant of Sorting Nexin1 (SNX1), which had more Pi content and less anthocyanin accumulation than the wild type under deficient Pi. By contrast, the snx1-2 mutant displayed higher sensitivity to exogenous arsenate in terms of seed germination and root elongation, revealing higher Pi uptake rates. Further study showed that SNX1 could co-localize and interact with PHT1;1 and PHT1;4 in vesicles and at the plasma membrane. Genetic analysis showed that increased Pi content in the snx1-2 mutant under low Pi conditions could be extensively compromised by mutating PHT1;1 in the double mutant snx1-2 pht1;1, revealing that SNX1 is epistatic to PHT1;1. In addition, SNX1 negatively controls PHT1;1 protein stability; therefore, PHT1;1 protein abundance in the plasma membrane was increased in the snx1-2 mutant compared with the wild type under either sufficient or deficient Pi. Together, our study (i) identifies SNX1 as a key modulator of the plant response to low Pi and (ii) unravels its role in the modulation of PHT1;1 protein stability, PHT1;1 accumulation at the plasma membrane, and root Pi uptake.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Plant Roots/genetics , Plant Roots/metabolism
16.
Front Public Health ; 10: 838661, 2022.
Article in English | MEDLINE | ID: mdl-35372236

ABSTRACT

Introduction: The aim of this study was to develop and validate a new diabetes distress scale suitable for Chinese and Taiwanese culture. Methods: This study collected the current diabetes distress measurement tools, re-organized current definitions about the domains of diabetes distress, and then developed a new tool. Three hundred and ninety-five participants from four hospitals in northern Taiwan were recruited by cluster randomized sampling for validity test. Results: We found the new diabetes distress scale had appropriate reliability and validity, including an acceptable model fit for the 12-item scale. Conclusions: This new diabetes distress scale might be more directly related to emotional distress issues blood glucose control, improve the clinical conspicuity of diabetes distress, and even benefit the overall care of diabetic patients in Taiwan. Further studies about the validity and reliability of this new tool in a nationwide setting are needed.


Subject(s)
Diabetes Mellitus , Cultural Competency , Humans , Psychological Distress , Psychometrics , Reproducibility of Results , Taiwan
17.
Mol Plant ; 15(6): 973-990, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35488429

ABSTRACT

To adapt to changing environments, plants have evolved elaborate regulatory mechanisms balancing their growth with stress responses. It is currently unclear whether and how the tryptophan (Trp), the growth-related hormone auxin, and the stress hormone abscisic acid (ABA) are coordinated in this trade-off. Here, we show that tryptophan synthase ß subunit 1 (TSB1) is involved in the coordination of Trp and ABA, thereby affecting plant growth and abiotic stress responses. Plants experiencing high salinity or drought display reduced TSB1 expression, resulting in decreased Trp and auxin accumulation and thus reduced growth. In comparison with the wild type, amiR-TSB1 lines and TSB1 mutants exhibited repressed growth under non-stress conditions but had enhanced ABA accumulation and stress tolerance when subjected to salt or drought stress. Furthermore, we found that TSB1 interacts with and inhibits ß-glucosidase 1 (BG1), which hydrolyses glucose-conjugated ABA into active ABA. Mutation of BG1 in the amiR-TSB1 lines compromised their increased ABA accumulation and enhanced stress tolerance. Moreover, stress-induced H2O2 disrupted the interaction between TSB1 and BG1 by sulfenylating cysteine-308 of TSB1, relieving the TSB1-mediated inhibition of BG1 activity. Taken together, we revealed that TSB1 serves as a key coordinator of plant growth and stress responses by balancing Trp and ABA homeostasis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Tryptophan Synthase , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Homeostasis , Hormones/metabolism , Hydrogen Peroxide/metabolism , Indoleacetic Acids/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Tryptophan/metabolism , Tryptophan Synthase/genetics , Tryptophan Synthase/metabolism
18.
Can J Cardiol ; 38(6): 763-773, 2022 06.
Article in English | MEDLINE | ID: mdl-35007705

ABSTRACT

BACKGROUND: Assessment of left ventricular systolic dysfunction provides essential information related to the prognosis and management of cardiovascular diseases. The aim of this study was to develop a deep-learning model to identify left ventricular ejection fraction (LVEF) ≤ 35% via chest X-ray (CXR [CXR-EF≤35%]) features and investigate the performance and clinical implications. METHODS: This study collected 90,547 CXRs with the corresponding LVEF according to transthoracic echocardiography from the outpatient department in an academic medical center. Among these, 77,227 CXRs were used to develop the identification of CXR-EF≤35%. Another 13,320 CXRs were used to validate the performance, which was evaluated by area under the receiver operating characteristic curve (AUC). Furthermore, CXR-EF≤35% was tested to assess the long-term risks of developing LVEF ≤ 35% and cardiovascular outcomes, which were evaluated by Kaplan-Meier survival analysis and the Cox proportional hazards model. RESULTS: The AUCs of CXR-EF≤35% for the detection of LVEF ≤ 35% were 0.888 and 0.867 in the internal and external validation cohorts, respectively. Patients with baseline LVEF > 50% but detected as CXR-EF≤35% were at higher risk of long-term development of LVEF ≤ 35% (hazard ratio, internal validation cohort [HRi] 3.91, 95% CI 2.98-5.14; hazard ratio, external validation cohort [HRe] 2.49, 95% CI 1.89-3.27). Furthermore, patients detected as LVEF ≤ 35% by CXR-EF≤35% had significantly higher future risks of all-cause mortality (HRi 1.40, 95% CI 1.15-1.71; HRe 1.38, 95% CI 1.15-1.66), cardiovascular mortality (HRi 3.02, 95% CI 1.84-4.98; HRe 2.60, 95% CI 1.77-3.82), and new-onset atrial fibrillation (HRi 2.81, 95% CI 2.15-3.66; HRe 2.93, 95% CI 2.34-3.67) compared with those detected as no LVEF ≤ 35%. CONCLUSIONS: CXR-EF≤35% may serve as a screening tool for early detection of LVEF ≤ 35% and could independently contribute to predictions of long-term development of LVEF ≤ 35% and cardiovascular outcomes. Further prospective studies are needed to confirm the model performance.


Subject(s)
Ventricular Dysfunction, Left , Ventricular Function, Left , Artificial Intelligence , Humans , Prognosis , Stroke Volume , Ventricular Dysfunction, Left/diagnostic imaging , X-Rays
19.
J Exp Bot ; 73(17): 5961-5973, 2022 09 30.
Article in English | MEDLINE | ID: mdl-34922349

ABSTRACT

Phytomelatonin is a universal signal molecule that regulates plant growth and stress responses; however, only one receptor that can directly bind with and perceive melatonin signaling has been identified so far, namely AtPMTR1/CAND2 in Arabidopsis. Whether other plants contain a similar receptor and, if so, how it functions is still unknown. In this study, we identified a new phytomelatonin receptor in the monocot maize (Zea mays), and investigated its role in plant responses to osmotic and drought stress. Using homology searching, we identified a plasma membrane-localized protein, Zm00001eb214610/ZmPMTR1, with strong binding activity to melatonin as a potential phytomelatonin receptor in maize. Overexpressing ZmPMTR1 in Arabidopsis Col-0 promoted osmotic stress tolerance, and rescued osmotic stress sensitivity of the Arabidopsis cand2-1 mutant. Furthermore, ZmPMTR1 also largely rescued defects in melatonin-induced stomatal closure in the cand2-1 mutant, thereby reducing water loss rate and increasing tolerance to drought stress. In addition, we identified a maize mutant of ZmPMTR1, EMS4-06e2fl, with a point-mutation causing premature termination of protein translation, and found that this mutant had lower leaf temperatures, increased rate of water loss, and enhanced drought stress sensitivity. Thus, we present ZmPMTR1 as the first phytomelatonin receptor to be identified and examined in a monocot plant, and our results indicate that it plays an important function in the response of maize to drought stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Melatonin , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Melatonin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Stress, Physiological/genetics , Water/metabolism , Zea mays/metabolism
20.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884520

ABSTRACT

Low temperature remarkably limits rubber tree (Hevea brasiliensis Muell. Arg.) growth, latex production, and geographical distribution, but the underlying mechanisms of Hevea brasiliensis cold stress response remain elusive. Here, we identified HbSnRK2.6 as a key component in ABA signaling functions in phytohormone abscisic acid (ABA)-regulated cold stress response in Hevea brasiliensis. Exogenous application of ABA enhances Hevea brasiliensis cold tolerance. Cold-regulated (COR) genes in the CBF pathway are upregulated by ABA. Transcript levels of all five HbSnRK2.6 members are significantly induced by cold, while HbSnRK2.6A, HbSnRK2.6B, and HbSnRK2.6C can be further activated by ABA under cold conditions. Additionally, HbSnRK2.6s are localized in the cytoplasm and nucleus, and can physically interact with HbICE2, a crucial positive regulator in the cold signaling pathway. Overexpression of HbSnRK2.6A or HbSnRK2.6B in Arabidopsis extensively enhances plant responses to ABA and expression of COR genes, leading to increased cold stress tolerance. Furthermore, HbSnRK2.6A and HbSnRK2.6B can promote transcriptional activity of HbICE2, thus, increasing the expression of HbCBF1. Taken together, we demonstrate that HbSnRK2.6s are involved in ABA-regulated cold stress response in Hevea brasiliensis by regulating transcriptional activity of HbICE2.


Subject(s)
Abscisic Acid/pharmacology , Cold-Shock Response , Gene Expression Regulation, Plant/drug effects , Hevea/metabolism , Plant Proteins/metabolism , Protein Kinases/metabolism , Transcription Factors/metabolism , Hevea/drug effects , Hevea/genetics , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Protein Kinases/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...