Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(12)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34203054

ABSTRACT

Distributed fiber sensing (DFS) can provide real-time signals and warnings. The entire length of fiber optic cable can act as a sensing element, but the accuracy is sometimes limited. On the other hand, point-to-point fiber sensing (PPFS) is usually implemented using one or more fiber Bragg gratings (FBGs) at specific positions along with the fiber for the monitoring of specific parameters (temperature, strain, pressure, and so on). However, the cost becomes expensive when the number of FBGs increases. A hybrid fiber sensing scheme is thus proposed, combining the advantages of DFS and PPFS. It is based on a Brillouin optical time-domain analysis (BOTDA) fiber system with additional FBGs embedded at certain positions where it is necessary to detect specific parameters. The hybrid fiber sensing system has the advantages of full sensing coverage at essential locations that need to be carefully monitored. In our work, the test results showed that the proposed system could achieve a sensing distance of 16 km with the single-mode fiber with a 2 m spatial resolution. For FBG parameter measurements, the temperature variation was 52 °C, from 25 °C to 77 °C, with a temperature sensitivity of 23 pm/°C, and the strain was from 0 to 400 µÎµ, with a strain sensitivity of 0.975 pm/µÎµ, respectively, using two FBGs.

2.
Sensors (Basel) ; 18(7)2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29996507

ABSTRACT

A novel fiber anemometer based on two pairs of fiber gratings is experimentally demonstrated and can simultaneously detect wind speed and wind direction. One pair of gratings, which are separated by 90° in space, is fixed on a small stainless steel pipe driven by a rotating disc for measuring the wind-direction angle. The other pair is composed of a sensing and a matched grating. The frequency of the spectrum-shifted of the sensing grating to overlap with that of the matched grating is employed for determining the wind speed. The errors in the wind-speed and wind-angle measurements are experimentally demonstrated to be less than 1%. The proposed fiber anemometer with a simple and durable structure can be applied in wind-powered electricity generators.

3.
Sensors (Basel) ; 17(12)2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29244770

ABSTRACT

We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation.

4.
Opt Express ; 22(8): 8962-9, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24787785

ABSTRACT

A simple refractive index sensor based on a small section of fiber damaged by the fiber fuse is proposed and demonstrated with a sensitivity of 350.58 nm/refractive index unit (RIU). For comparison, a hetero-core structure fiber sensor composed of a short no-core fiber (NCF) sandwiched between two pieces of single-mode fibers is demonstrated with a sensitivity of 157.29 nm/RIU. The fiber fuse technique can allow mass production of sensors by incorporating small sections of the damaged fiber of any type into each device. We believe this is the first application of the periodic damage tracks in optical fibers formed by the fiber fuse.

5.
Appl Opt ; 48(25): F1-5, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19724306

ABSTRACT

The dispersion characteristics of superstructure fiber gratings written in multimode fibers and side-polished multimode fibers are investigated at different bending curvatures. The experimental results show that the group time delay in multimode superstructure fiber gratings can be tuned more easily than that of superstructure gratings in single-mode fiber. This method can provide tunable dispersion of superstructure fiber gratings by controlling the bending curvatures for application in dispersion compensators, fiber sensors, or suitable optical filters of optical communication systems.

6.
Opt Express ; 16(20): 16013-8, 2008 Sep 29.
Article in English | MEDLINE | ID: mdl-18825240

ABSTRACT

By means of novel packaged-structure design, a temperature independent differential pressure sensor based on fiber Bragg gratings with high sensitivity is experimentally demonstrated. The differential pressure sensitivity of the sensor can reach to 821.87nm/MPa. This device can also be used for simultaneous measurement of temperature and differential pressure, which is suitable for applications involving measurement of liquid level, liquid density or specific gravity detection.


Subject(s)
Equipment Design/instrumentation , Fiber Optic Technology/instrumentation , Algorithms , Equipment Design/methods , Gravitation , Models, Statistical , Pressure , Refractometry/instrumentation , Temperature , Thermography/instrumentation , Transducers
7.
Appl Opt ; 41(9): 1661-7, 2002 Mar 20.
Article in English | MEDLINE | ID: mdl-11921793

ABSTRACT

A temperature-independent fiber-Bragg-grating strains-sensing system, based on a novel optical-power-detection scheme, is developed and analyzed. In this system a pair of fiber Bragg gratings with reflection spectra either partially or substantially overlapping is placed side by side to form a temperature-independent strain-sensor unit. Conventional wavelength-interrogation techniques are not used here, and instead an optical-power-detection scheme is proposed to directly calibrate the measurand, i.e., the strain. Unlike the conventional approach in a multiplexed sensing system, the presented power-detection-based interrogation method does not need the fiber-Bragg-grating sensors to be spectrally separate. The only requirement is that the spectra of the two fiber Bragg gratings of each sensor unit in a multiplexed system be identical or slightly separate (slightly overlapping spectra would also work in the sensing scheme) and the source's optical power be sufficient for sensitive measurement. Based on a three-sensor-unit system, we demonstrate simple strain measurements of high linearity (+/- 0.4%), good sensitivity [2 microstrains (microS)], high thermal stability (+/- 0.8%), and zero cross talk. The effects of light source spectral flatness and fiber bending loss on measurement accuracy are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...