Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 519
Filter
1.
Cell Prolif ; : e13722, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072821

ABSTRACT

Aberrant activation of dermal fibroblasts during wound healing often leads to debilitating fibrotic changes in the skin, such as scleroderma and keloids. However, the underlying cellular and molecular mechanisms remain elusive. Here, we established a wound-induced skin fibrosis (WISF) mouse model in mature adult mice, characterised by excessive deposition of collagen bundles, loss of dermal adipocytes, and enrichment of DPP4+Ly6A+THY1+ hypodermal interstitial adipocyte progenitors (HI-APs) and pericytes, resembling human fibrotic skin diseases. This WISF model exhibited an age-dependent gain of fibrotic characteristics, contrasting with the wound-induced hair neogenesis observed in younger mice. Through comprehensive analyses of the WISF, we delineated a trajectory of fibroblast differentiation that originates from HI-APs. These progenitors highly expressed several extracellular matrix (ECM) genes and exhibited a TGFß pathway signature. TGFß was identified as the key signal to inhibit the adipogenic potential and maintain the fibrogenic potential of dermal APs. Additionally, administering a TGFß receptor inhibitor to wound scar reduced the abundance of ECM-producing APs. Finally, analysis of human scleroderma skin tissues revealed a negative correlation between the expression of AP-, ECM-, and TGFß pathway-related genes and PPARG. Overall, this study establishes a wound-induced skin fibrosis mouse model and demonstrates that TGFß-mediated blockage of HI-AP differentiation is crucial for driving fibrotic pathology. Targeting HI-APs and adipogenesis may provide novel avenues for developing disease-modifying therapies for fibrotic skin diseases.

2.
BMJ Open ; 14(7): e086415, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39067882

ABSTRACT

INTRODUCTION: Tracheostomy is a common emergency procedure for critically ill patients to secure their airway. The speaking valve is a one-way ventilation valve that is attached to the end of the tracheostomy tube to help the patient remodel subglottic pressure. However, the efficacy and safety of speaking valves in adult patients with tracheostomy remain controversial. The purpose of this protocol is to describe and evaluate the effectiveness, safety and impact on the quality of life of speaking valves in adult patients with tracheostomy. METHODS AND ANALYSIS: We will search four English databases (PubMed, Embase, Cochrane Library and Web of Science), grey literature websites and reference lists of original studies to screen for studies that might meet the criteria. The two authors will independently screen the literature, extract data and assess the quality and risk of bias of the included studies. The primary outcomes will focus on the patients' swallowing function, vocalisation and quality of life. We will use a fixed effects model or a random effects model based on heterogeneity testing or a descriptive analysis only. The quality of evidence on the effects of interventions will be assessed using the Grading of Recommendations Assessment, Development, and Evaluation. ETHICS AND DISSEMINATION: This study is based on the literature in the database and does not require the approval of the ethics committee. The results will be disseminated through a peer-reviewed journal and conferences. PROSPERO REGISTRATION NUMBER: CRD42024502906.


Subject(s)
Meta-Analysis as Topic , Quality of Life , Research Design , Systematic Reviews as Topic , Tracheostomy , Adult , Humans , Critical Illness , Tracheostomy/instrumentation
3.
Sci Total Environ ; 947: 174565, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38986715

ABSTRACT

Long-term waste accumulation (LTWA) in soil not only alters its physical and chemical properties but also affects heavy metals and microorganisms in polluted soil through the dissolved organic matter (DOM) it produces. However, research on the impact of DOM from LTWA on heavy metals and microorganisms in polluted soil is limited, which has resulted in an incomplete understanding of the mechanisms involved in LTWA soils remediation. This study focuses on the DOM generated by waste accumulation and analyses the physicochemical properties, microbial community structure, and vertical distribution of heavy metals in four types of LTWA soils at different depths (0-100 cm). A causal analysis is conducted using structural equation modelling. The results indicate that due to the retention effect of the soil and microorganisms, heavy metal pollution is concentrated on the soil surface layer (>30 cm). With increasing depth, there is a decrease in heavy metal concentration and an increase in microbial diversity and abundance. DOM plays a significant role in regulating the concentration of soil heavy metals and the diversity and abundance of microorganisms. The DOM from different soils gradually transforms into substances dominated by tyrosine, tryptophan, and fulvic acid, which sustain the normal life activities and gene expression of microorganisms. Bacteria such as Pseudarthrobacter, Desulfurivibrio, Thiobacillus, and Sulfurimonas, which are involved in energy transformation, along with genes such as water channel protein and YDIF, which enhance heavy metal metabolism, ensure that microbial communities can maintain basic life processes in polluted environments and gradually select for dominant species that are adapted to heavy metal pollution. These novel discoveries illuminate the potential for modulating the composition of DOM to amplify microbial activity, while concurrently offering insights into the migration patterns of various long-term exogenous pollutants. This foundational knowledge provides a foundation for the development of efficacious remediation strategies.


Subject(s)
Metals, Heavy , Soil Microbiology , Soil Pollutants , Soil , Metals, Heavy/analysis , Soil Pollutants/metabolism , Soil Pollutants/analysis , Soil/chemistry , Bacteria/metabolism , Microbiota
4.
J Med Chem ; 67(15): 12571-12600, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39041662

ABSTRACT

Targeting dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has been verified to regulate the progression of tau pathology as a promising treatment for Alzheimer's disease (AD), while the research progress on DYRK1A inhibitors seemed to be in a bottleneck period. In this work, we identified 32 (ZJCK-6-46) as the most potential DYRK1A inhibitor (IC50 = 0.68 nM) through rational design, systematic structural optimization, and comprehensive evaluation. Compound 32 exhibited acceptable in vitro absorption, distribution, metabolism, and excretion (ADME) properties and significantly reduced the expression of p-Tau Thr212 in Tau (P301L) 293T cells and SH-SY5Y cells. Moreover, compound 32 showed favorable bioavailability, blood-brain barrier (BBB) permeability, and the potential of ameliorating cognitive dysfunction by obviously reducing the expression of phosphorylated tau and neuronal loss in vivo, which was deserved as a valuable molecular tool to reveal the role of DYRK1A in the pathogenesis of AD and to further promote the development of anti-AD drugs.


Subject(s)
Alzheimer Disease , Dyrk Kinases , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , tau Proteins , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , tau Proteins/metabolism , tau Proteins/antagonists & inhibitors , Structure-Activity Relationship , Administration, Oral , Male , Rats , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , HEK293 Cells , Mice , Drug Discovery , Phosphorylation/drug effects , Molecular Docking Simulation , Rats, Sprague-Dawley
5.
Sci Total Environ ; 948: 174935, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39053530

ABSTRACT

Forest restoration is an effective method for restoring degraded soil ecosystems (e.g., converting primary tropical forests into rubber monoculture plantations; RM). The effects of forest restoration on microbial community diversity and composition have been extensively studied. However, how rubber plantation-based forest restoration reshapes soil microbial communities, networks, and inner assembly mechanisms remains unclear. Here, we explored the effects of jungle rubber mixed (JRM; secondary succession and natural restoration of RM) plantation and introduction of rainforest species (AR; anthropogenic restoration established by mimicking the understory and overstory tree species of native rainforests) to RM stands on soil physico-chemical properties and microbial communities. We found that converting tropical rainforest (RF) to RM decreased soil fertility and simplified microbial composition and co-occurrence patterns, whereas the conversion of RM to JRM and AR exhibited opposite results. These changes were significantly correlated with pH, soil moisture content (SMC), and soil nutrients, suggesting that vegetation restoration can provide a favorable soil microenvironment that promotes the development of soil microorganisms. The complexity and stability of the bacterial-fungal cross-kingdom, bacterial, and fungal networks increased with JRM and AR. Bacterial community assembly was primarily governed by stochastic (78.79 %) and deterministic (59.09 %) processes in JRM and AR, respectively, whereas stochastic processes (limited dispersion) predominantly shaped fungal assembly across all forest stands. AR has more significant benefits than JRM, such as a relatively slower and natural vegetation succession with more nutritive soil conditions, microbial diversity, and complex and stable microbial networks. These results highlight the importance of sustainable forest management to restore soil biodiversity and ecosystem functions after extensive soil degradation and suggest that anthropogenic restoration can more effectively improve soil quality and microbial communities than natural restoration in degraded rubber plantations.


Subject(s)
Microbiota , Soil Microbiology , Rubber , Soil/chemistry , Hevea , Rainforest , Environmental Restoration and Remediation/methods , Fungi , Bacteria , Forests
6.
Pathol Res Pract ; 260: 155413, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981344

ABSTRACT

INTRODUCTION: Osteoclasts, which are responsible for bone resorption, are specialized multinucleated cells generated from monocyte/macrophage progenitor cells or hematopoietic stem cells (HSCs). Physiological bone remodeling can become pathological, such as osteoporosis, when osteoclastogenesis is out of balance. Thousands of long noncoding RNAs (lncRNAs) influence important molecular and biological processes. Recent research has revealed gene expression regulation function that numerous lncRNAs regulate nuclear domain organization, genome stability. Furthermore, the research of lncRNAs has substantial clinical implications for the treatment of existing and new diseases. AREAS COVERED: In this review, we gather the most recent research on lncRNAs and their potential for basic research and clinical applications in osteoclast and osteoporosis. We also discuss the findings here in order to fully understand the role of lncRNAs in osteoclast differentiation and osteoporosis, as well as to provide a solid basis for future research exploring associated mechanisms and treatments. EXPERT OPINION: LncRNA has been considered as an important role in the regulation of osteoclast differentiation and osteoporosis. It is exciting to investigate pathophysiological processes in osteoporosis and the therapeutic potential of lncRNAs. We hope that this review will offer promising prospects for the development of precision and individualized approaches to treatment.


Subject(s)
Cell Differentiation , Osteoclasts , Osteoporosis , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Osteoporosis/genetics , Osteoporosis/pathology , Osteoclasts/pathology , Osteoclasts/metabolism , Cell Differentiation/genetics , Animals , Osteogenesis/genetics , Osteogenesis/physiology
7.
J Neuroimmunol ; 393: 578402, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38996717

ABSTRACT

Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.


Subject(s)
Brain Neoplasms , Toxoplasmosis , Animals , Mice , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Toxoplasmosis/immunology , Toxoplasma/immunology , Medulloblastoma/immunology , Medulloblastoma/pathology , Mice, Inbred C57BL , T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Transgenic , Female
8.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3002-3011, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041160

ABSTRACT

This study aims to observe the effects of the traditional Chinese medicine prescription Dahuang Zhechong Pills(DHZCP on renal aging and explore its potential multi-target effects. Rats were assigned into the normal, model, DHZCP, and vitamin E(VE)groups. Firstly, the rat model of D-galactose(D-gal)-induced renal aging was established. During the modeling period, the rats in the 4 groups were administrated with double distilled water, double distilled water, DHZCP suspension, and VE suspension, respectively,by gavage every day. On day 60 of intervention, the indicators of renal aging and injury in rats were measured, including the function,histopathological characteristics, senescence-associated ß-galactosidase( SA-ß-gal) staining, and expression levels of Klotho and proteins associated with cell cycle arrest and senescence-associated secretory phenotype(SASP) in the renal tissue. Moreover, nontargeted metabolomic analysis of the renal tissue was performed for the 4 groups of rats to screen out the potential biomarkers and metabolic pathways. Finally, the signaling pathways of key targets were preliminarily validated. The results showed that DHZCP and VE significantly improved the renal function, histopathological features of renal tubular/interstitial tissue, and degree of SA-ß-gal staining, up-regulated the expression level of Klotho, and down-regulated the expression levels of proteins associated with cell cycle arrest and SASP in the renal tissue of the aging rats. In addition, DHZCP and VE regulated the metabolites in the renal tissue of the aging rats. There were 21 common differential metabolites. Among them, 5 differential metabolites were significantly increased in the aging rats and recovered after DHZCP or VE treatment, and they were involved in the lipid metabolism and energy metabolism pathways. The areas under the curves of the groups in comparison varied within the range of 0. 88-1. DHZCP regulated multiple signaling pathways, such as the adenosine monophosphate-activated protein kinase(AMPK), cyclic guanosine monophosphate-protein kinase G( c GMP-PKG), cyclic adenylic acid( c AMP), phosphatidylinositol-3-kinase-protein kinase B( PI3K-Akt), mammalian target of rapamycin(mTOR), and autophagy signaling pathways. In addition, it affected the multiple metabolic pathways, such as renin secretion, longevity regulation pathway, diabetic cardiomyopathy, and niacin and nicotinamide metabolism. DHZCP and VE significantly up-regulated the expression level of the key proteins in the AMPK signaling pathway in the renal tissue of the aging rats. In all, DHZCP and VE could mitigate renal aging and injury. DHZCP exerted multi-target effects via multiple signaling pathways and metabolic pathways in the kidney, in which the AMPK signaling pathway may be one of the key targets for action.


Subject(s)
Aging , Drugs, Chinese Herbal , Kidney , Metabolomics , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Rats , Kidney/drug effects , Kidney/metabolism , Aging/drug effects , Aging/metabolism , Male , Signal Transduction/drug effects
10.
Acta Physiol (Oxf) ; 240(8): e14184, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822624

ABSTRACT

AIM: Sepsis-induced myocardial injury (SIMI) may be associated with insufficient mitophagy in cardiomyocytes, but the exact mechanism involved remains unknown. Sirtuin 3 (Sirt3) is mainly found in the mitochondrial matrix and is involved in repairing mitochondrial function through means such as the activation of autophagy. Previously, we demonstrated that the annexin-A1 small peptide (ANXA1sp) can promote Sirt3 expression in mitochondria. In this study, we hypothesized that the activation of Sirt3 by ANXA1sp induces mitophagy, thereby providing a protective effect against SIMI in mice. METHODS: A mouse model of SIMI was established via cecal ligation and puncture. Intraperitoneal injections of ANXA1sp, 3TYP, and 3MA were administered prior to modeling. After successful modeling, IL-6, TNF-α, CK-MB, and CTn-I levels were measured; cardiac function was assessed using echocardiography; myocardial mitochondrial membrane potential, ROS, and ATP production were determined; myocardial mitochondrial ultrastructure was observed using transmission electron microscopy; and the expression levels of Sirt3 and autophagy-related proteins were detected using western blotting. RESULTS: ANXA1sp significantly reduced serum IL-6, TNF-α, CK-MB, and CTn-I levels; decreased myocardial ROS production; increased mitochondrial membrane potential and ATP synthesis; and improved myocardial mitochondrial ultrastructure in septic mice. Furthermore, ANXA1sp promoted Sirt3 expression and activated the AMPK-mTOR pathway to induce myocardial mitophagy. These protective effects of ANXA1sp were reversed upon treatment with the Sirt3 blocker, 3-TYP. CONCLUSION: ANXA1sp can reverse SIMI, and the underlying mechanism may be related to the activation of the AMPK-mTOR pathway following upregulation of Sirt3 by ANXA1sp, which, in turn, induces autophagy.


Subject(s)
Annexin A1 , Mitophagy , Sepsis , Sirtuin 3 , Animals , Sepsis/complications , Sepsis/metabolism , Mitophagy/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Mice , Annexin A1/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Disease Models, Animal , Autophagy , Peptides
11.
Int J Womens Health ; 16: 1093-1101, 2024.
Article in English | MEDLINE | ID: mdl-38887592

ABSTRACT

Objective: To evaluate factors predictive of the success of a slow-release dinoprostone vaginal insert for cervical ripening. Methods: This retrospective study included 187 women who received dinoprostone vaginal inserts for cervical ripening. The participants were divided into two groups: the transvaginal delivery group (n = 87) and cesarean section termination group (n = 100). The correlation between the parameters present before cervical ripening with dinoprostone slow release and its success, as well as complications and adverse outcomes, was analyzed. Cesarean section predictors and area under the curve (AUC) were compared between the two Groups. Results: There were statistical differences between the two groups in body mass index (BMI), height, cervical Bishop score, cephalic position, time of medication use, and fetal head position at the time of medication use (P<0.05). The optimal thresholds for identifying cesarean section in dinoprostone vaginal insert for cervical ripening were 162.5 for height (AUC = 0.61), 10.65 cm for amniotic fluid index (AUC = 0.6), S-2.5 for cephalic position (AUC = 0.61), 5.5 for bishop score of cervix (AUC = 0.65). The height, amniotic fluid index, cephalic position, and Bishop score of the cervix were included in the same model. The AUC value of the combined model was higher than the AUC value of the single factor. Conclusion: The combined model was a better predictor of cesarean section in dinoprostone vaginal inserts for cervical ripening and labor induction. The success of cervical ripening with a dinoprostone slow-release vaginal insert can be predicted by the factors that can be recognized at admission.

12.
Front Med (Lausanne) ; 11: 1402853, 2024.
Article in English | MEDLINE | ID: mdl-38919939

ABSTRACT

We describe a technique to reattach the detached Descemet's membrane, following cataract surgery. From the main clear corneal cataract incision, aqueous humor is ejected completely by apposition of the cornea to the iris for approximately 3 s. This ensures the fluid in the space between the stroma and Descemet's membrane is ejected and the detached Descemet's membrane returns to its original position. Sterile air is injected through a paracentesis 180 degrees away from the Descemet's membrane detachment, to maintain a complete air-filled chamber. Full air tamponade is maintained for 20 min, following which one-third of the air is ejected from the chamber to prevent an increase of postoperative intraocular pressure.

13.
J Biomed Res ; 38(4): 397-412, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807380

ABSTRACT

Given the extremely high inter-patient heterogeneity of acute myeloid leukemia (AML), the identification of biomarkers for prognostic assessment and therapeutic guidance is critical. Cell surface markers (CSMs) have been shown to play an important role in AML leukemogenesis and progression. In the current study, we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas (TCGA) based on differential gene expression analysis and univariable Cox proportional hazards regression analysis. By using multi-model analysis, including Adaptive LASSO regression, LASSO regression, and Elastic Net, we constructed a 9-CSMs prognostic model for risk stratification of the AML patients. The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels. Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients. The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores. Notably, single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance. Furthermore, PI3K inhibitors were identified as potential treatments for these high-risk patients. In conclusion, we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.

14.
J Acoust Soc Am ; 155(5): 3436-3446, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780196

ABSTRACT

Fueled by the concepts of topological insulators, analogous topological acoustics offer an alternative approach to manipulate sound. Theoretical proposals for subwavelength acoustic topological insulators are considered to be ideal effective parameters or utilizeing artificial coiling-space metamaterials. However, the corresponding realization using realistic soft metamaterials remains challenging. In this study, we present the design of an acoustic subwavelength second-order topological insulator using nanoscale porous solid material, silica aerogel, which supports pseudospin-dependent topological edge and corner states simultaneously. Through simulations and experiments, we demonstrate that silica aerogel can function as a soft acoustic metamaterial at the subwavelength scale. By embedding silica aerogel in an air matrix to construct a honeycomb lattice, a double Dirac cone is obtained. A topological phase transition is induced by expanding or contracting the supercell, resulting in band inversion. Additionally, we propose topologically robust acoustic transmission along the one-dimensional edge. Furthermore, we discover that the proposed sonic crystal sustains zero-dimensional corner states, which can efficiently confine energy at subwavelength corners. These findings offer potential for the realization of subwavelength topological acoustic devices using realistic soft metamaterials.

15.
Front Psychiatry ; 15: 1383664, 2024.
Article in English | MEDLINE | ID: mdl-38807688

ABSTRACT

Background: Exposure to trauma is often associated with an increased incidence of Major Depressive Disorder (MDD), yet the mechanisms underlying MDD development post-trauma remain elusive. The microbiota-gut-brain axis has been implicated in neuropsychiatric disorders, suggesting its potential role in post-traumatic MDD (PTMDD) development. Our study aimed to assess the significance of the gut microbiome-brain interaction in PTMDD. Methods: We conducted a bidirectional two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between the gut microbiota and both PTMDD and trauma exposure in MDD. Genome-wide association study (GWAS) summary datasets for PTMDD and trauma exposure in MDD, both derived from the UK Biobank. The PTMDD dataset included 24,090 individuals (13,393 cases and 10,701 controls), while the dataset for trauma exposure in MDD comprised 22,880 participants (13,393 cases and 9,487 controls). Additionally, gut microbiota data from the MiBioGen consortium included 14,306 European individuals across 18 diverse cohorts. Results: Our research identified a significant negative association between the phylum Verrucomicrobia (odds ratio (OR) [95% confidence interval (CI)] =0.799 [0.684-0.933], P=0.005) and the risk of developing PTMDD, suggesting a protective role for Verrucomicrobia against PTMDD. Conversely, our findings indicate no causal effects of the gut microbiota on trauma exposure in MDD. However, reverse analysis revealed that both PTMDD and MDD influence certain bacterial traits, affecting 5 and 9 bacterial traits, respectively. Moreover, Verrucomicrobia (OR [95% CI] = 1.166 [1.051 - 1.294], P=0.004) was found to be positively impacted by trauma exposure in MDD. Conclusion: Our findings provide a cause-and-effect relationship between the gut microbiota and PTMDD, contributing to our understanding of the microbiota-gut-brain axis and its role in neuropsychiatric disorder development after trauma. This information provides an opportunity for new treatment and prevention methods which are aimed at the gut-brain interaction.

16.
J Environ Manage ; 360: 121232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801804

ABSTRACT

Surfactant pollution is escalatitheng in eutrophic waters, but the effect of surfactant charge properties on the physiological and biochemical properties of toxin-producing microalgae remains inadequately explored. To address this gap, this study explores the effects and mechanisms of three common surfactants-cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Triton X-100 (nonionic)-found in surface waters, on the agglomeration behavior, physiological indicators, and Microcystin-LR (MC-LR) release of Microcystis aeruginosa (M. aeruginosa) by using UV-visible spectroscope, Malvern Zetasizer, fluorescence spectrometer, etc. Results suggest that charge properties significantly affect cyanobacterial aggregation and cellular metabolism. The CTAB-treated group demonstrates a ∼5.74 and ∼9.74 times higher aggregation effect compared to Triton X-100 and SDS (300 mg/L for 180 min) due to strong electrostatic attraction. Triton X-100 outperforms CTAB and SDS in polysaccharide extraction, attributed to its higher water solubility and lower critical micelle concentration. CTAB stimulates cyanobacteria to secrete proteins, xanthohumic acid, and humic acids to maintain normal physiological cells. Additionally, the results of SEM and ion content showed that CTAB damages the cell membrane, resulting in a ∼90% increase in the release of intracellular MC-LR without cell disintegration. Ionic analyses confirm that all three surfactants alter cell membrane permeability and disrupt ionic metabolic pathways in microalgae. This study highlights the relationship between the surface charge properties of typical surfactants and the dispersion/agglomeration behavior of cyanobacteria. It provides insights into the impact mechanism of exogenous surfactants on toxic algae production in eutrophic water bodies, offering theoretical references for managing surfactant pollution and treating algae blooms.


Subject(s)
Microcystins , Microcystis , Surface-Active Agents , Microcystins/chemistry , Microcystins/metabolism , Microcystis/drug effects , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Octoxynol/chemistry , Octoxynol/pharmacology , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/pharmacology
18.
Sci Total Environ ; 939: 173487, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38810758

ABSTRACT

Large-scale and precise measurement of mangrove canopy height is crucial for understanding and evaluating wetland ecosystems' condition, health, and productivity. This study generates a global mangrove canopy height map with a 30 m resolution by integrating Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) photon-counting light detection and ranging (LiDAR) data with multi-source imagery. Initially, high-quality mangrove canopy height samples were extracted using meticulous processing and filtering of ICESat-2 data. Subsequently, mangrove canopy height models were established using the random forest (RF) algorithm, incorporating ICESat-2 canopy height samples, Sentinel-2 data, TanDEM-X DEM data and WorldClim data. Furthermore, a global 30 m mangrove canopy height map was generated utilizing the Google Earth Engine platform. Finally, the global map's accuracy was evaluated by comparing it with reference canopy heights derived from both space-borne and airborne LiDAR data. Results indicate that the global 30 m resolution mangrove height map was found to be consistent with canopy heights obtained from space-borne (r = 0.88, Bisa = -0.07 m, RMSE = 3.66 m, RMSE% = 29.86 %) and airborne LiDAR (r = 0.52, Bisa = -1.08 m, RMSE = 3.39 m, RMSE% = 39.05 %). Additionally, our findings reveal that mangroves worldwide exhibit an average height of 12.65 m, with the tallest mangrove reaching a height of 44.94 m. These results demonstrate the feasibility and effectiveness of using ICESat-2 data integrated with multi-source imagery to generate a global mangrove canopy height map. This dataset offers reliable information that can significantly support government and organizational efforts to protect and conserve mangrove ecosystems.

19.
Environ Sci Pollut Res Int ; 31(23): 34234-34248, 2024 May.
Article in English | MEDLINE | ID: mdl-38698093

ABSTRACT

Soil organic carbon (SOC) is a crucial medium of the global carbon cycle and is profoundly affected by multiple factors, such as climate and management practices. However, interactions between different SOC fractions and land-use change have remained largely unexplored in karst ecosystems with widespread rock outcrops. Owing to the inherent heterogeneity and divergent response of SOC to land-use change, soil samples with close depth were collected from four typical land-use types (cropland, grassland, shrubland, and forestland) in the karst rocky desertification area of China. The aim of this study was to explore the responses of SOC dynamics to land-use types and underlying mechanism. The results showed that land-use type significantly affected SOC contents and its fractions. Compared with cropland, the other three land uses increased the total organic carbon (TOC), microbial biomass carbon (MBC), and non-labile organic carbon (NLOC) contents by 6.11-129.44%, 32.58-173.73%, and 90.98-347.00%, respectively; this demonstrated that a decrease in both labile and recalcitrant carbon resulted in SOC depletion under agricultural land use. Readily oxidized organic carbon (ROC) ranged from 42 to 69%, accounting for almost half of the TOC in the 0-40-cm soil layer. Cropland soil showed significantly higher ROC:TOC ratios than other land-use types. These results indicated that long-term vegetation restoration decreased SOC activity and improved SOC stability. Greater levels of soil exchangeable calcium (ECa) and clay contents were likely responsible for higher stabilization and then accumulation of SOC after vegetation restoration. The carbon pool index (CPI) rather than the carbon pool management index (CPMI) exhibited consistent variation trend with soil TOC contents among land-use types. Thus, further study is needed to validate the CPMI in evaluating land use effects on soil quality in karst ecosystems. Our findings suggest that land-use patterns characterized by grass or forest could be an effective approach for SOC-sequestration potential and ensure the sustainable use of soil resources in the karst area.


Subject(s)
Calcium , Carbon , Clay , Soil , China , Soil/chemistry , Carbon/analysis , Calcium/analysis , Clay/chemistry , Ecosystem , Agriculture , Carbon Cycle
20.
Int J Biol Macromol ; 271(Pt 1): 132452, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777007

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Little is known about how gene expression and chromatin structure are regulated in NAFLD due to lack of suitable model. Ducks naturally develop fatty liver similar to serious human non-alcoholic fatty liver (NAFL) without adipose inflammation and liver fibrosis, thus serves as a good model for investigating molecular mechanisms of adipose metabolism and anti-inflammation. Here, we constructed a NAFLD model without adipose inflammation and liver fibrosis in ducks. By performing dynamic pathological and transcriptomic analyses, we identified critical genes involving in regulation of the NF-κB and MHCII signaling, which usually lead to adipose inflammation and liver fibrosis. We further generated dynamic three-dimensional chromatin maps during liver fatty formation and recovery. This showed that ducks enlarged hepatocyte cell nuclei to reduce inter-chromosomal interaction, decompress chromatin structure, and alter strength of intra-TAD and loop interactions during fatty liver formation. These changes partially contributed to the tight control the NF-κB and the MHCII signaling. Our analysis uncovers duck chromatin reorganization might be advantageous to maintain liver regenerative capacity and reduce adipose inflammation. These findings shed light on new strategies for NAFLD control.


Subject(s)
Chromatin , Ducks , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Chromatin/metabolism , Chromatin/genetics , NF-kappa B/metabolism , Inflammation/genetics , Inflammation/pathology , Inflammation/metabolism , Adipose Tissue/metabolism , Genome , Liver/metabolism , Liver/pathology , Disease Models, Animal , Signal Transduction , Hepatocytes/metabolism , Hepatocytes/pathology , Gene Expression Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...