Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
J Environ Manage ; 365: 121509, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897088

ABSTRACT

The Qinghai-Tibetan Plateau harbors rich and diverse wetlands that provide multiple ecological functions simultaneously. Although the relationships between biodiversity and wetland functioning have been well studied in recent decades, the links between the multiple features of plant and microbial communities and soil multifunctionality (SMF) remain unknown in the high-altitude wetlands that are extremely sensitive to human disturbance. Here, using the single function, averaging, weighted, and multiple-threshold methods, we calculated the SMF of Qinghai-Tibetan wetlands based on 15 variables associated with soil nutrient status, nutrient cycle, and greenhouse gas emission. We then related SMF to multidimensional (species, phylogenetic, and functional) diversity of plants and soil microorganisms and microbial network modules. The results showed that plant diversity explained more variance in SMF than soil microbial diversity, and plant species richness and phylogenetic distance were positive predictors of SMF. Bacterial network modules were more positively related to SMF than fungal network modules, and the alpha diversity of bacterial network modules contributed more to SMF than the diversity of the whole bacterial community. Pediococcus, Hirsutella, and Rhodotorula were biomarkers for SMF and had significant relationships with nitrogen mineralization and greenhouse gas emissions. Together, these results highlight the importance of plant diversity and bacterial network modules in determining the SMF, which are crucial to predicting the response of ecosystem functioning to biodiversity loss under intensifying anthropogenic activities.

2.
ACS Nano ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877988

ABSTRACT

Nanoplastics (NPs) represent a growing concern for global environmental health, particularly in marine ecosystems where they predominantly accumulate. The impact of NPs on marine benthic organisms, such as bivalves, raises critical questions regarding ecological integrity and food safety. Traditional methods for assessing NP toxicity are often limited by their time-intensive nature and ethical considerations. Herein, we explore the toxicological effects of NPs on the marine bivalve Ruditapes philippinarum, employing a combination of in vitro cellular assays and advanced modeling techniques. Results indicate a range of adverse effects at the organismal level, including growth inhibition (69.5-108%), oxidative stress, lipid peroxidation, and DNA damage in bivalves, following exposure to NPs at concentrations in the range of 1.6 × 109-1.6 × 1011 particles/mL (p/mL). Interestingly, the growth inhibition predicted by models (54.7-104%), based on in vitro cellular proliferation assays, shows strong agreement with the in vivo outcomes of NP exposure. Furthermore, we establish a clear correlation between cytotoxicity observed in vitro and the toxicological responses at the organismal level. Taken together, this work suggests that the integration of computational modeling with in vitro toxicity assays can predict the detrimental effects of NPs on bivalves, offering insightful references for assessing the environmental risk assessment of NPs in marine benthic ecosystems.

3.
Nutr Cancer ; : 1-10, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733116

ABSTRACT

Cervical cancer (CC) is a common gynecological malignancy, and improving cisplatin sensitivity has become a hot topic in CC chemotherapy research. Polyphyllin I (PPI), a potent bioactive compound found in Rhizoma Paridis, known for its anticancer properties, remains underexplored in CC resistance. In this study, we evaluated PPI's impact on cisplatin-resistant CC cells and elucidated its underlying mechanism. Our findings reveal that PPI enhances the sensitivity of cisplatin-resistant CC cells to the drug, promotes apoptosis, and inhibits cell migration. Mechanistically, PPI was found to regulate p53 expression and its target genes, and suppressing p53 expression reverses PPI's sensitizing effect in drug-resistant CC cells. In conclusion, PPI showed promise in sensitizing cisplatin-resistant human CC cells to cisplatin treatment, suggesting that it could serve as a potent adjunct therapy for cervical cancer, particularly for cases that have developed resistance to cisplatin, thereby providing a promising basis for further clinical investigation into PPI for enhancing the efficacy of existing chemotherapy regimens in resistant cervical cancer.

4.
Environ Pollut ; 353: 124190, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38782159

ABSTRACT

Riparian zones, regarded as hotspots for greenhouse gas (GHG) emissions, where the variation in temperature sensitivity (Q10) of GHG emissions is crucial for assessing GHG budgets under global warming. However, the seasonal Q10 of GHG emissions from high-elevation riparian zones and underlying microbial mechanisms are poorly documented. This study focuses on seasonal Q10 patterns of GHG emissions from riparian zones along the Lhasa River on the Tibetan Plateau. CO2 and CH4 emissions from riparian soils were more sensitive to temperature in spring than in summer. The opposite trend was observed for Q10 of N2O emissions. Soil organic carbon (SOC) had relatively large direct effects on the Q10-CO2 value in summer, whereas soil nitrate nitrogen (SNO3--N) was the determinant of Q10-CO2 value in spring. mcrA:pmoA and soil microbial biomass C (SMBC) had strong direct effects on the Q10 of CH4 emissions in summer; the Q10-CH4 value in spring was significantly affected by the mcrA abundance. SMBC and the nirK + nirS abundance were key factors affecting the Q10-N2O value. Q10-CO2 and Q10-CH4 values exhibited strong seasonalities in the lower reaches of riparian soils, mainly due to the seasonalities of SNO3--N and mcrA:pmoA, respectively. The Q10-N2O value in the middle and upper reaches of riparian soils presented seasonality, which was largely due to the seasonalities of soil ammonia nitrogen and microbial biomass carbon. During thawing, plant productivity increased, substrate carbon was sufficient, microbial biomass increased, and inorganic nitorgen and denitrifier abundance decreased, causing 29.67% and 37.47% decreases in the Q10-CO2 and Q10-CH4 values, respectively, and a 70.85% increase in the Q10-N2O value, indicating that the potential release of N2O from riparian zones along the plateau river was more susceptible to seasonal variations. Our findings are conducive to accurately evaluating the potential contribution of GHG emissions from high-elevation riparian zones to global warming.


Subject(s)
Air Pollutants , Environmental Monitoring , Greenhouse Gases , Methane , Seasons , Temperature , Greenhouse Gases/analysis , Environmental Monitoring/methods , Methane/analysis , Air Pollutants/analysis , Soil/chemistry , Carbon Dioxide/analysis , Tibet , Rivers/chemistry , Global Warming , Nitrous Oxide/analysis
5.
Glob Chang Biol ; 30(3): e17256, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532549

ABSTRACT

Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are three competing processes of microbial nitrate reduction that determine the degree of ecosystem nitrogen (N) loss versus recycling. However, the global patterns and drivers of relative contributions of these N cycling processes to soil or sediment nitrate reduction remain unknown, limiting our understanding of the global N balance and management. Here, we compiled a global dataset of 1570 observations from a wide range of terrestrial and aquatic ecosystems. We found that denitrification contributed up to 66.1% of total nitrate reduction globally, being significantly greater in estuarine and coastal ecosystems. Anammox and DNRA could account for 12.7% and 21.2% of total nitrate reduction, respectively. The contribution of denitrification to nitrate reduction increased with longitude, while the contribution of anammox and DNRA decreased. The local environmental factors controlling the relative contributions of the three N cycling processes to nitrate reduction included the concentrations of soil organic carbon, ammonium, nitrate, and ferrous iron. Our results underline the dominant role of denitrification over anammox and DNRA in ecosystem nitrate transformation, which is crucial to improving the current global soil N cycle model and achieving sustainable N management.


Subject(s)
Ammonium Compounds , Nitrates , Nitrates/analysis , Ecosystem , Denitrification , Carbon , Soil , Nitrogen , Oxidation-Reduction
6.
mSystems ; 9(4): e0014724, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38445871

ABSTRACT

Microorganisms regulate numerous ecosystem functions and show considerable differences along a latitudinal gradient. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of ecosystem multifunctionality (EMF) and how microbial communities affect EMF along a latitudinal gradient remain unclear. Here, we collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. We also determined microbial diversity (taxonomic and functional) and microbial network complexity using metagenomic sequencing. The results showed that EMF significantly decreased with increasing latitude in riparian rhizosphere and bulk soils but not in channel sediments. Microbial taxonomic and functional richness (observed species) in channel sediments were significantly higher in the low-latitude group than in the high-latitude group. However, microbial co-occurrence networks were more complex in the high-latitude group compared with the low-latitude group. Abiotic factors, primarily geographic and climatic factors, contributed more to EMF than microbial diversity and network complexity parameters in which only betweenness centralization had a significant relationship with EMF. Together, this study provides insight into the latitudinal pattern of EMF in rivers and highlights the importance of large-scale factors in explaining such latitudinal patterns.IMPORTANCEEcosystem multifunctionality (EMF) is the capacity of an ecosystem to provide multiple functions simultaneously. Microorganisms, as dominant drivers of belowground processes, have a profound effect on ecosystem functions. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of EMF and how microbial communities affect EMF along a latitudinal gradient remain unclear. We collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers along a latitudinal gradient across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. This study fills a critical knowledge gap regarding the latitudinal patterns and drivers of EMF in river ecosystems and gives new insights into how microbial diversity and network complexity affect EMF from a metagenomic perspective.


Subject(s)
Microbiota , Rivers , Rhizosphere , Plants , Soil/chemistry , Nitrogen
7.
Antioxidants (Basel) ; 13(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38397768

ABSTRACT

With the gradual decline in freshwater resources, the space available for freshwater aquaculture is diminishing and the need to maximize saline water for aquaculture is increasing. This study aimed to elucidate the impact mechanisms of the disruption of the glutamate pathway on serum metabolism and ammonia excretion in crucian carp (Carassius auratus) under carbonate alkaline stress. A freshwater control group (C group), a 20 mmol/L NaHCO3 stress group (L group), and a 40 mmol/L NaHCO3 stress group (H group) were established. After 30 days of exposure, methionine sulfoximine (MSO) was injected to block the glutamate pathway metabolism, and the groups post-blocking were labeled as MC, ML, and MH. Ultra-high-performance liquid chromatography coupled with the quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomics technique was employed to detect changes in the composition and content of crucian carp serum metabolites. Significant differential metabolites were identified, and related metabolic pathways were analyzed. The results revealed that, following the glutamate pathway blockade, a total of 228 differential metabolites (DMs) were identified in the three treatment groups. An enrichment analysis indicated significant involvement in glycerophospholipid metabolism, arachidonic acid metabolism, sphingolipid metabolism, purine metabolism, arginine and proline biosynthesis, pantothenate and CoA biosynthesis, glutathione metabolism, and fatty acid degradation, among other metabolic pathways. The results showed that ROS imbalances and L-arginine accumulation in crucian carp after the glutamate pathway blockade led to an increase in oxidative stress and inflammatory responses in vivo, which may cause damage to the structure and function of cell membranes. Crucian carp improves the body's antioxidant capacity and regulates cellular homeostasis by activating glutathione metabolism and increasing the concentration of phosphatidylcholine (PC) analogs. Additionally, challenges such as aggravated ammonia excretion obstruction and disrupted energy metabolism were observed in crucian carp, with the upregulation of purine metabolism alleviating ammonia toxicity and maintaining energy homeostasis through pantothenate and CoA biosynthesis as well as fatty acid degradation. This study elucidated the metabolic changes in crucian carp under carbonate alkaline stress after a glutamate pathway blockade at the cellular metabolism level and screened out the key metabolic pathways, which provide a scientific basis for further in-depth studies on the ammonia excretion of freshwater scleractinian fishes under saline and alkaline habitats at a later stage.

8.
Water Res ; 254: 121317, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401285

ABSTRACT

Nitrogen (N) cycling in rivers is particularly active and dynamic due to excess nutrient inputs worldwide. However, the multidimensional spatial patterns of the activity and community structure of N-cycling microorganisms in rivers remain unclear, limiting our understanding of river ecological functions, especially N removal capacity. Here, we measured the nitrification and denitrification rates and identified nitrifying and denitrifying microorganisms using high-throughput sequencing of archaeal amoA, bacterial amoA, nirK, and nirS genes in channel sediments, riparian rhizosphere soils, and riparian bulk soils of 30 N-polluted rivers across China. Results showed that in the lateral dimension, nitrification rates in sediments did not differ significantly from those in rhizosphere and bulk soils, but denitrification rates were higher in sediments than in bulk soils. However, the archaeal amoA gene abundance in sediments was considerably lower than that in rhizosphere and bulk soils, and bacterial amoA gene abundance in sediments was greater than that in rhizosphere soils. In the vertical dimension, both nitrification and denitrification rates in riparian bulk soils decreased with soil depth, and topsoils harbored more nitrifying and denitrifying microbes than subsoils. Denitrification but not nitrification rates increased with latitude and altitude but decreased with increasing mean annual temperature and precipitation. Overall, these results provide new insights into the multidimensional spatial patterns of river N cycling at a large scale, which is crucial to evaluating the N removal function of global rivers.


Subject(s)
Denitrification , Nitrogen , Nitrogen/analysis , Rivers , Nitrification , Soil/chemistry , Soil Microbiology
9.
ACS Nano ; 18(3): 2370-2383, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38189275

ABSTRACT

Nanoplastics (NPs) pervade daily life, posing serious threats to marine ecosystems. Despite the crucial role that surface charge plays in NP effects, there is a substantial gap in our understanding of how surface charge influences NP toxicity. Herein, by exposing Ruditapes philippinarum (R. philippinarum) to both positively charged NPs (p-NPs) and negatively charged NPs (n-NPs) at environmentally relevant particle number levels for a duration of 35 days, we unequivocally demonstrate that both types of NPs had discernible impacts on the clams depending on their surface charge. Through transcriptomic and proteomic analyses, we unveiled the primary mechanisms behind p-NP toxicity, which stem from induced mitochondrial dysfunction and ferroptosis. In contrast, n-NPs predominantly stimulated innate immune responses, influencing salivary secretion and modulating the complement and coagulation cascades. Furthermore, in vitro tests on clam immune cells confirmed that internalized p-NPs triggered alterations in mitochondrial morphology, a decrease in membrane potential, and the initiation of ferroptosis. Conversely, n-NPs, to a certain extent, moderated the expression of genes related to immune responses, thus mitigating their adverse effects. Taken together, these findings indicate that the differential surface-charge-driven ferroptosis and mitochondrial dysfunction in clams play a critical role in the toxicity profile of NPs, providing an insightful reference for assessing the ecological toxicity associated with NPs.


Subject(s)
Bivalvia , Ferroptosis , Mitochondrial Diseases , Water Pollutants, Chemical , Animals , Microplastics/metabolism , Microplastics/pharmacology , Proteomics , Ecosystem , Polystyrenes
10.
Microbiol Res ; 279: 127570, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096690

ABSTRACT

Type VI secretion system (T6SS) plays an essential role in interspecies interactions and provides an advantage for a strain with T6SS in multispecies biofilms. However, how T6SS drives the bacterial community structure and functions in multispecies biofilms still needs to be determined. Using gene deletion and Illumina sequencing technique, we estimated bacterial community responses in multispecies biofilms to T6SS by introducing T6SS-containing Pseudomonas putida KT2440. Results showed that the niche structure shifts of multispecies biofilms were remarkably higher in the presence of T6SS than in the absence of T6SS. The presence of T6SS significantly drove the variation in microbial composition, reduced the alpha-diversity of bacterial communities in multispecies biofilms, and separately decreased and increased the relative abundance of Proteobacteria and Bacteroidota. Co-occurrence network analysis with inferred putative bacterial interactions indicated that P. putida KT2440 mainly displayed strong negative associations with the genera of Psychrobacter, Cellvibrio, Stenotrophomonas, and Brevundimonas. Moreover, the function redundancy index of the bacterial community was strikingly higher in the presence of T6SS than in the absence of T6SS, regardless of whether relative abundances of bacterial taxa were inhibited or promoted. Remarkably, the increased metabolic network similarity with T6SS-containing P. putida KT2440 could enhance the antibacterial activity of P. putida KT2440 on other bacterial taxa. Our findings extend knowledge of microbial adaptation strategies to potential bacterial weapons and could contribute to predicting biodiversity loss and change in ecological functions caused by T6SS.


Subject(s)
Pseudomonas putida , Type VI Secretion Systems , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Gene Deletion , Biofilms
11.
Animals (Basel) ; 13(11)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37889762

ABSTRACT

Grass carp reovirus genotype Ⅱ (GCRV Ⅱ) causes a variety of fish hemorrhagic disease, which seriously affects the sustainable development of grass carp aquaculture in China. Rare minnow (Gobiocypris rarus) is an ideal model fish to study the pathogenesis of GCRV Ⅱ. To investigate the involved molecular responses against the GCRV Ⅱ infection, we performed comparative transcriptomic analysis in the spleen and liver of rare minnow injected with virulent strain DY197 and attenuated strain QJ205. Results showed that the virulent DY197 strain induced more differently expressed genes (DEGs) than the attenuated QJ205 strain, and tissue-specific responses were induced. In the spleen, the attenuated and virulent strains induced different DEGs; the attenuated QJ205 infection activated steroid synthesis pathway that involved in membrane formation; however, virulent DY197 infection activated innate immunity and apoptosis related pathways while suppressing cell proliferation and migration related pathways that are important for damage tissue repair, as well as hemorrhage related pathways. In the liver, the attenuated and virulent strains infection induced similar DEGs; both strains infection activated immunity and apoptosis related pathways but suppressed metabolism-related pathways; virulent DY197 infection especially activated protein digestion and absorption-related pathways and suppressed steroid synthesis pathway. To conclude, virulent strain infection especially induced tissue-specific alterations and caused severe suppression of hemorrhage-related pathways in spleen. Our findings will contribute to better understanding of the interactions between host and GCRV II.

12.
Virus Res ; 335: 199196, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37597665

ABSTRACT

B-cell lymphoma-2 (BCL-2) superfamily molecules play crucial roles in mitochondrial apoptosis induced by Chinese giant salamander iridovirus (GSIV). As an anti-apoptotic molecule in the BCL-2 family, the molecular mechanism of Bcl-w during GSIV infection remains unknown. In this study, we characterized for the first time an amphibian Bcl-w from Chinese giant salamander Andrias davidianus (AdBcl-w), and its function and regulatory mechanism during GSIV infection were investigated. AdBcl-w possesses the conserved structural features of Bcl-w and shares 35-54% sequence identities with other Bcl-w. mRNA expression of AdBcl-w was most abundant in liver and muscle. The AdBcl-w mRNA expression was regulated during GSIV infection. Western blotting assays revealed that the level of Bcl-w protein was downregulated markedly as the infection progresses. Confocal microscopy showed that overexpressed AdBcl-w was translocated to the mitochondria after infection with GSIV. Flow cytometry analysis demonstrated that compared with control, the apoptotic progress in cells transfected with AdBcl-w was reduced while that in cells transfected with AdBcl-w siRNA was enhanced. The number of virus major capsid protein gene copies was lower and protein synthesis was reduced in AdBcl-w overexpressing cells. In addition, AdBcl-w could bind directly to the pro-apoptotic molecule AdBak, while this interaction was weakened with GSIV infection. Moreover, p53 level was reduced and the mRNA expression levels of crucial regulatory molecules in the p53 pathway were regulated in AdBcl-w overexpressing cells during GSIV infection. These results suggested that AdBcl-w inhibit GSIV replication by regulating the virus induced mitochondrial apoptosis.


Subject(s)
Iridovirus , Animals , Iridovirus/genetics , Tumor Suppressor Protein p53 , Mitochondria , Apoptosis , Urodela , Virus Replication , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger
13.
J Fish Dis ; 46(11): 1249-1256, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37535813

ABSTRACT

Chinese giant salamander iridovirus (GSIV) is the first known and causative viral pathogen in Andrias davidianus. Developing a sensitive, accurate and specific assay to detect GSIV in samples is essential to prevent the further spread of the pathogen. In this study, we established a droplet digital PCR (ddPCR) assay that targeted the mcp gene of GSIV, enabling rapid and quantitative detection of the virus. We determined that the optimal annealing temperature, primer concentration and probe concentration were 57.1°C, 50 nM and 500 nM, respectively. We analysed the specificity and sensitivity of the ddPCR assay and found that five common aquatic animal viruses, including Cyprinid herpesvirus 2 (CyHV-2), infectious spleen and kidney necrosis virus (ISKNV), Koi herpesvirus (KHV) and Carp Edema Virus (CEV) displayed negative results based on this GSIV ddPCR assay. The assay can detect GSIV with the lowest detection limit of 3.7 copies per reaction. To evaluate the sensitivity and accuracy of the ddPCR assay, we tested different infected tissue samples with both the ddPCR and TaqMan real-time PCR assays. Our results showed that the ddPCR assay detected GSIV in all samples with 100% positivity, while the TaqMan real-time PCR assay detected GSIV in only 82.1% of samples. The established ddPCR method provided several advantages in detecting GISV, including high sensitivity, high precision and absolute quantification, making it a powerful tool for detection of possible and potential GSIV infection, even in samples with low viral load.

14.
iScience ; 26(8): 107252, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37502256

ABSTRACT

The spatial pattern and driving mechanism of biodiversity along elevational gradients are key topics in ecology. However, it is still unclear whether the multidimensional diversity of different types of organisms shows a similar response to elevation changes. Here, we measured the species and phylogenetic diversity of plants, bacteria, fungi, and microbial functional groups (nitrifiers, denitrifiers, methanogens, and methanotrophs) in 36 wetland sites on the Qinghai-Tibetan Plateau. The results showed that both species and phylogenetic diversity of plants, bacteria, and fungi exhibited a significant elevational gradient, in direct contrast to no significant diversity changes observed for denitrifiers, methanogens, and methanotrophs along the same altitude gradient. Our findings suggest that elevation and temperature were more likely to associate with the diversity of plants, bacteria, and fungi than the diversity of microbial functional groups, with important implications for assessing the effect of ongoing climate warming on biodiversity in Qinghai-Tibetan alpine wetlands.

15.
Water Res ; 243: 120344, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37482008

ABSTRACT

Understanding response of bacterioplankton community responsible for maintaining ecological functions of aquatic ecosystems to environmental disturbance is an important subject. However, it remains largely unclear how bacterioplankton generalists and specialists respond to dredging disturbance. Illumina MiSeq sequencing and statistical analyses were used to evaluate landscape patterns, evolutionary potentials, environmental adaptability, and community assembly processes of generalists and specialists in response to dredging in eutrophic Lake Nanhu. The Proteobacteria and Actinobacteria dominated bacterioplankton communities of generalists and specialists, and abundances of Proteobacteria decreased and Actinobacteria increased after dredging. The generalists displayed higher phylogenetic distance, richness difference, speciation rate, extinction rate, and diversification rate as well as stronger environmental adaptation than that of specialists. In contrast, the specialists rather than generalists showed higher community diversity, taxonomic distance, and species replacement as well as closer phylogenetic clustering. Stochastic processes dominated community assemblies of generalists and specialists, and stochasticity exhibited a larger effect on community assembly of generalists rather than specialists. Our results emphasized that lake dredging could change landscape patterns of bacterioplankton generalists and specialists, whereas the short-term dredging conducted within one year was unable to reverse community difference between generalists and specialists. Our findings extend our understanding of how bacterioplankton generalists and specialists responding to dredging disturbance, and these findings might in turn call on long-term dredging for better ecological restoration of eutrophic lakes.


Subject(s)
Ecosystem , Lakes , Lakes/microbiology , Phylogeny , Aquatic Organisms , Bacteria , China
16.
17.
Virus Res ; 334: 199150, 2023 09.
Article in English | MEDLINE | ID: mdl-37302658

ABSTRACT

Fusion-associated small transmembrane (FAST) proteins can promote cell fusion, alter membrane permeability and trigger apoptosis to promote virus proliferation in orthoreoviruses. However, it is unknown whether FAST proteins perform these functions in aquareoviruses (AqRVs). Non-structural protein 17 (NS17) carried by grass carp reovirus Honghu strain (GCRV-HH196) belongs to the FAST protein family, and we preliminarily explored its relevance to virus infection. NS17 has similar domains to FAST protein NS16 of GCRV-873, comprising a transmembrane domain, a polybasic cluster, a hydrophobic patch and a polyproline motif. It was observed in the cytoplasm and the cell membrane. Overexpression of NS17 enhanced the efficiency of cell-cell fusion induced by GCRV-HH196 and promoted virus replication. Overexpression of NS17 also led to DNA fragmentation and reactive oxygen species (ROS) accumulation, and it triggered apoptosis. The findings illuminate the functions of NS17 in GCRV infection, and provide a reference for the development of novel antiviral strategies.


Subject(s)
Carps , Fish Diseases , Orthoreovirus , Reoviridae Infections , Reoviridae , Virus Diseases , Animals , Reoviridae Infections/genetics , Cell Fusion , Reoviridae/genetics , Reoviridae/metabolism , Apoptosis
18.
Water Res ; 242: 120257, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37356159

ABSTRACT

The impact of nitrogen (N) on water eutrophication is well-known, but the specific influence of hydrodynamic factors on N occurrence in aquatic systems has remained unclear. This lack of understanding has hindered our ability to assess the self-purification function of aquatic ecosystems and address water pollution problem. Here, we collected overlying water and sediment samples from different aquatic ecosystems (ditch, pond, river, and reservoir) in the Danjiangkou Reservoir area and compared the variation characteristics of various N components, and further conducted an incubation experiment to investigate the rate of N removal. We found that the concentration of total N and its N components decreased from ditches and ponds to rivers and reservoirs, indicating that N removal occurred during water flow, with up to 43% of total N concentration reduction rate. Additionally, we observed higher heterogeneity in eco-stoichiometric characteristics of N components in ditches and ponds compared to rivers and reservoirs. Interestingly, the ditches and ponds exhibited stronger interactions between overlying water and sediment, with higher rates of denitrification and anaerobic ammonium oxidation (anammox). Our findings highlight the need to focus on the upper reaches of agricultural catchments, such as ditches and ponds, for N removal and emphasize the importance of developing region-specific conservation strategies to mitigate N pollution and protect water resources.


Subject(s)
Denitrification , Nitrogen , Ecosystem , Hydrodynamics , Water , Geologic Sediments
19.
Water Res ; 242: 120249, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37356163

ABSTRACT

Micro- and nanoplastics are emerging concerns due to their environmental ubiquity and currently largely unknown ecological impacts. Leveraging on a recently developed method using europium-doped polystyrene particles (PS-Eu), our present work aimed to accurately trace the uptake and transport of micro- and nanoplastics in aquatic plants and shed insights into the potential of different aquatic plants for trapping and removal of plastics from water environment. Seedlings of Vallisneria denseserrulata Makino (submerged plant), Iris tectorum Maxim (emergent plant), and Eichhornia crassipes Solms (floating plant) were exposed to 100 nm and 2 µm PS-Eu in freshwater (5 µg/mL) or sediments (5 µg/g) for 8 weeks. Fluorescence imaging clearly evidenced that PS-Eu mainly accumulated in the intercellular space and were transported from roots to leaves via the apoplastic path and vascular bundle. Mass spectrum analysis demonstrated that up to 6250 µg/g nanoplastics were trapped in aquatic plants (mainly in roots) with a bioconcentration factor of 306.5, depending on exposure routes and plant species. Owing to their excellent capture capability and high tolerance to plastic exposures, floating plants like E. crassipes are promising for immobilizing and removing fine plastics from the water environment.

20.
Front Endocrinol (Lausanne) ; 14: 1127441, 2023.
Article in English | MEDLINE | ID: mdl-37223030

ABSTRACT

Background: Mitochondria are significant both for cellular energy production and reactive oxygen/nitrogen species formation. However, the significant functions of mitochondrial genes related to oxidative stress (MTGs-OS) in pancreatic cancer (PC) and pancreatic neuroendocrine tumor (PNET) are yet to be investigated integrally. Therefore, in pan-cancer, particularly PC and PNET, a thorough assessment of the MTGs-OS is required. Methods: Expression patterns, prognostic significance, mutation data, methylation rates, and pathway-regulation interactions were studied to comprehensively elucidate the involvement of MTGs-OS in pan-cancer. Next, we separated the 930 PC and 226 PNET patients into 3 clusters according to MTGs-OS expression and MTGs-OS scores. LASSO regression analysis was utilized to construct a novel prognostic model for PC. qRT-PCR(Quantitative real-time PCR) experiments were performed to verify the expression levels of model genes. Results: The subtype associated with the poorest prognosis and lowerest MTGs-OS scores was Cluster 3, which could demonstrate the vital function of MTGs-OS for the pathophysiological processes of PC. The three clusters displayed distinct variations in the expression of conventional cancer-associated genes and the infiltration of immune cells. Similar molecular heterogeneity was observed in patients with PNET. PNET patients with S1 and S2 subtypes also showed distinct MTGs-OS scores. Given the important function of MTGs-OS in PC, a novel and robust MTGs-related prognostic signature (MTGs-RPS) was established and identified for predicting clinical outcomes for PC accurately. Patients with PC were separated into the training, internal validation, and external validation datasets at random; the expression profile of MTGs-OS was used to classify patients into high-risk (poor prognosis) or low-risk (good prognosis) categories. The variations in the tumor immune microenvironment may account for the better prognoses observed in high-risk individuals relative to low-risk ones. Conclusions: Overall, our study for the first time identified and validated eleven MTGs-OS remarkably linked to the progression of PC and PNET, and elaborated the biological function and prognostic value of MTGs-OS. Most importantly, we established a novel protocol for the prognostic evaluation and individualized treatment for patients with PC.


Subject(s)
Adenoma, Islet Cell , Neuroectodermal Tumors, Primitive , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Genes, Mitochondrial , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy , Precision Medicine , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Oxidative Stress/genetics , Mitochondria , Tumor Microenvironment , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...