Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Genet Mol Res ; 15(4)2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27819728

ABSTRACT

Early recovery of myocardial perfusion is beneficial for myocardial ischemia. However, ischemia-reperfusion (I/R) may exacerbate myocardial injury. Research shows that total peony glucoside (TPG) can inhibit ischemic myocardial cell apoptosis. However, whether it can ameliorate I/R injury remains poorly understood. This study explored the effect of TPG pretreatment on I/R, through nuclear factor-kappa B (NF-κB) and intercellular adhesion molecule-1 (ICAM-1) expressions in I/R-affected myocardium. Healthy 7-week-old male Sprague Dawley rats were randomly categorized into sham operation (A), modeling (B), and 100, 200, and 400 mg/kg TPG pretreatment groups (C, D, and E, respectively), with 20 rats in each group. I/R rat models were designed by ligating left anterior descending coronary artery for 30 min to induce ischemia and for 120 min to induce reperfusion. Serum interleukin 6 (IL-6) and interleukin 8 (IL-8) levels were measured using enzyme linked immunosorbent assay. NF-κB and ICAM-1 mRNA and protein expressions were detected through RT-PCR and western blot analysis, respectively. Compared to group A, serum IL-6 and IL-8 levels of group B elevated significantly (P < 0.05), whereas NF-κB and ICAM-1 mRNA and protein expressions increased in the myocardium (P < 0.05). Serum IL-6 and IL-8 levels, and NF-κB and ICAM-1 mRNA and protein expressions, in myocardium of TPG groups reduced in a dose-dependent manner. Therefore, TPG pretreatment could alleviate myocardium reperfusion injury in I/R rat models by reducing NF-κB and ICAM-1 mRNA and protein expressions and cytokine secretions. This mechanism could be associated with the inhibition of NF-κB activation and downregulation of ICAM-1 expression.


Subject(s)
Glucosides/therapeutic use , Intercellular Adhesion Molecule-1/genetics , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Myocardium/metabolism , NF-kappa B/genetics , Paeonia/chemistry , Animals , Disease Models, Animal , Glucosides/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/blood , Interleukin-8/blood , Male , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , NF-kappa B/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley
2.
Genet Mol Res ; 15(2)2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27323148

ABSTRACT

Over-utilization of germplasms that are resistant to the soybean cyst nematode (SCN) in soybean breeding programs can lead to genetic vulnerability in resistant cultivars. Resistant wild soybean (Glycine soja) is considered an invaluable gene source for increasing the genetic diversity of SCN resistance. In this study, we genotyped 23 G. soja accessions that are resistant to SCN race 3 for polymorphisms in the resistance genes, rhg1, Rhg4, and SHMT, and investigated their genetic relationship with eight Glycine max resistant cultivars. We identified 89 single nucleotide polymorphisms (SNPs) and 11 DNA insertion-deletions (InDels), of which 70 SNPs and 8 InDels were found in rhg1, 9 SNPs were found in Rhg4, and 10 SNPs and 3 InDels were found in SHMT. Nucleotide diversity was π = 0.00238 and θ = 0.00235, and haplotype diversity was 1.000. A phylogenetic tree comprising four clusters was constructed using sequence variations of the 23 G. soja and 8 G. max resistant accessions. Five G. soja accessions in subcluster A2, and four G. soja accessions in cluster B were genetically distant from G. max genotypes. Eight resistance-associated SNPs in the three resistance genes formed nine haplotypes in total. G. soja resistant accessions had different haplotypes (H2, H4, H5, H6, H7, and H8) compared with those of G. max (H1, H3, and H9). These results provide vital information on the use of wild soybeans for broadening the genetic base of SCN resistance.


Subject(s)
Disease Resistance/genetics , Glycine Hydroxymethyltransferase/genetics , Glycine max/genetics , Plant Diseases/genetics , Soybean Proteins/genetics , Alleles , Animals , Carrier Proteins/genetics , Genetic Variation , Genotype , Haplotypes , INDEL Mutation/genetics , Immunity, Innate/genetics , Nematoda/pathogenicity , Phylogeny , Plant Diseases/parasitology , Quantitative Trait Loci/genetics , Glycine max/parasitology
3.
Genet Mol Res ; 15(1)2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27050976

ABSTRACT

Long-term radiation exposure affects human health. Ionizing radiation has long been known to raise the risk of cancer. In addition to high doses of radiation, low-dose ionizing radiation might increase the risk of cardiovascular disease, lens opacity, and some other non-cancerous diseases. Low- and high-dose exposures to ionizing radiation elicit different signaling events at the molecular level, and may involve different response mechanisms. The health risks arising from exposure to low doses of ionizing radiation should be re-evaluated. Health workers exposed to ionizing radiation experience low-dose radiation and have an increased risk of hematological malignancies. Reproductive function is sensitive to changes in the physical environment, including ionizing radiation. However, data is scarce regarding the association between occupational radiation exposure and risk to human fertility. Sperm DNA integrity is a functional parameter of male fertility evaluation. Hence, we aimed to report sperm quality and DNA damage in men from Jilin Province, China, who were occupationally exposed to ionizing radiation. Sperm motility and normal morphology were significantly lower in the exposed compared with the non-exposed men. There was no statistically significant difference in sperm concentration between exposed and non-exposed men. The sperm DNA fragmentation index was significantly higher in the exposed than the non-exposed men. Chronic long-term exposure to low doses of ionizing radiation could affect sperm motility, normal morphology, and the sperm DNA fragmentation index in the Chinese population. Sperm quality and DNA integrity are functional parameters that could be used to evaluate occupational exposure to ionizing radiation.


Subject(s)
DNA Fragmentation/radiation effects , Occupational Exposure/adverse effects , Radiation, Ionizing , Sperm Motility/radiation effects , Spermatozoa/radiation effects , Adult , Case-Control Studies , China , Humans , Male
4.
Genet Mol Res ; 14(4): 13667-78, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26535682

ABSTRACT

Oryza officinalis has proven to be a natural gene reservoir for the improvement of domesticated rice as it carries many desirable traits; however, the transfer of elite genes to cultivated rice by conventional hybridization has been a challenge for rice breeders. In this study, the conserved sequence of plant stress-related NAC transcription factors was selected as a probe to screen the O. officinalis genomic transformation-competent artificial chromosome library by Southern blot; 11 positive transformation-competent artificial chromosome clones were subsequently detected. By Agrobacterium-mediated transformation, an indica rice variety, Huajingxian 74 (HJX74), was transformed with a TAC clone harboring a NAC gene-positive genomic fragment from O. officinalis. Molecular analysis revealed that the O. officinalis genomic fragment was integrated into the genome of HJX74. The transgenic lines exhibited high tolerance to drought stress. Our results demonstrate that the introduction of stress-related transformation-competent artificial chromosome clones, coupled with a transgenic validation approach, is an effective method of transferring agronomically important genes from O. officinalis to cultivated rice.


Subject(s)
Chromosomes, Artificial , Droughts , Oryza/genetics , Stress, Physiological , Transformation, Genetic , Adaptation, Biological , Oryza/growth & development , Phenotype , Plants, Genetically Modified , Quantitative Trait, Heritable
5.
Genet Mol Res ; 10(4): 3435-45, 2011 Oct 31.
Article in English | MEDLINE | ID: mdl-22057998

ABSTRACT

Pollen sterility is one of the main hindrances against the utilization of strong intersubspecific (indica-japonica) heterosis in rice. We looked for neutral alleles at known pollen sterility loci Sd and Se that could overcome this pollen sterility characteristic. Taichung 65, a typical japonica cultivar, and its near isogenic lines E7 and E8 for pollen sterility loci Sd and Se were employed as tester lines for crossing with 13 accessions of wild rice (O. rufipogon). Pollen fertility and genotypic segregations of the molecular markers tightly linked with Sd and Se loci were analyzed in the paired F(1)s and F(2) populations. One accession of wild rice (GZW054) had high pollen fertility in the paired F(1)s between Taichung 65 and E7 or E8. Genotypic segregations of the molecular markers tightly linked with Sd and Se loci fit the expected Mendelian ratio (1:2:1), and non-significances were shown among the mean pollen fertilities with the maternal, parental, and heterozygous genotypes of each molecular markers tightly linked with Sd and Se loci. Evidentially, it indicated that the alleles of Sd and Se loci for GZW054 did not interact with those of Taichung 65 and its near isogenic lines, and, thus were identified as neutral alleles Sd(n) and Se(n). These neutral genes could become important germplasm resources for overcoming pollen sterility in indica-japonica hybrids, making utilization of strong heterosis in such hybrids viable.


Subject(s)
Agriculture , Crosses, Genetic , Genes, Plant/genetics , Genetic Loci/genetics , Oryza/genetics , Plant Infertility/genetics , Pollen/genetics , Genetic Markers , Genetics, Population , Genotype , Oryza/growth & development , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL