Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Angew Chem Int Ed Engl ; : e202404330, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878199

ABSTRACT

Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a × 3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5C) and a high cycling stability (85.8%@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1C) accompanied by negligible voltage attenuation (98.5%@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.

2.
Small ; : e2401839, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804822

ABSTRACT

Co-free Li-rich Mn-based cathode materials are garnering great interest because of high capacity and low cost. However, their practical application is seriously hampered by the irreversible oxygen escape and the poor cycling stability. Herein, a reversible lattice adjustment strategy is proposed by integrating O vacancies and B doping. B incorporation increases TM─O (TM: transition metal) bonding orbitals whereas decreases the antibonding orbitals. Moreover, B doping and O vacancies synergistically increase the crystal orbital bond index values enhancing the overall covalent bonding strength, which makes TM─O octahedron more resistant to damage and enables the lattice to better accommodate the deformation and reaction without irreversible fracture. Furthermore, Mott-Hubbard splitting energy is decreased due to O vacancies, facilitating electron leaps, and enhancing the lattice reactivity and capacity. Such a reversible lattice, more amenable to deformation and forestalling fracturing, markedly improves the reversibility of lattice reactions and mitigates TM migration and the irreversible oxygen redox which enables the high cycling stability and high rate capability. The modified cathode demonstrates a specific capacity of 200 mAh g-1 at 1C, amazingly sustaining the capacity for 200 cycles without capacity degradation. This finding presents a promising avenue for solving the long-term cycling issue of Li-rich cathode.

3.
Heliyon ; 10(6): e28105, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545130

ABSTRACT

"Flipped classroom" has subverted the traditional classroom teaching model and is believed to have a positive impact on knowledge acquisition and skill training for higher education students. The pre-class learning phase is considered a key factor in the success of flipped classrooms. However, currently, the pre-class learning phase of flipped classrooms mainly relies on video watching, which makes students passive receivers. Teachers need to invest a lot of time and resources in developing online videos, which greatly increases students' learning time and tasks. This also hinders the promotion of this teaching model. This study designs a pre-active learning strategy based on student participation in video production and a flipped classroom teaching model, and uses questionnaire surveys and interviews to observe students' reactions, explore its impact on students' satisfaction, and empirically analyze the path it affects students' satisfaction. We found that in the pre-class phase, the greater the ease of use and usefulness perceived by students in video production, the higher the students' satisfaction. Perceived enjoyment and perceived value are important intermediary paths. In addition, based on the research results, this study proposes suggestions for a flipped classroom teaching model based on video production. The results of this study will provide important references for the pre-class learning phase of flipped classrooms.

4.
Opt Express ; 32(5): 8101-8121, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439476

ABSTRACT

It is extremely challenging to rapidly and accurately extract target echo photon signals from massive photon point clouds with strong background noise without any prior geographic information. Herein, we propose a fast surface detection method realized by combining the improved density-dimension algorithm (DDA) and Kalman filtering (KF), termed the DDA-KF algorithm, for photon signals with a high background noise rate (BNR) to improve the extraction of surface photon signals from spacecraft platforms. The results showed that the algorithm exhibited good adaptability to strong background noise and terrain slope variations, and had real-time processing capabilities for massive photon point clouds in large-scale detection range without prior altitude information of target. Our research provides a practical technical solution for single-photon lidar applications in deep space navigation and can help improve the performance in environments characterized by strong background noise.

5.
Angew Chem Int Ed Engl ; 63(16): e202400960, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38385630

ABSTRACT

Polymer-inorganic composite electrolytes (PICE) have attracted tremendous attention in all-solid-state lithium batteries (ASSLBs) due to facile processability. However, the poor Li+ conductivity at room temperature (RT) and interfacial instability severely hamper the practical application. Herein, we propose a concept of competitive coordination induction effects (CCIE) and reveal the essential correlation between the local coordination structure and the interfacial chemistry in PEO-based PICE. CCIE introduction greatly enhances the ionic conductivity and electrochemical performances of ASSLBs at 30 °C. Owing to the competitive coordination (Cs+…TFSI-…Li+, Cs+…C-O-C…Li+ and 2,4,6-TFA…Li…TFSI-) from the competitive cation (Cs+ from CsPF6) and molecule (2,4,6-TFA: 2,4,6-trifluoroaniline), a multimodal weak coordination environment of Li+ is constructed enabling a high efficient Li+ migration at 30 °C (Li+ conductivity: 6.25×10-4 S cm-1; tLi +=0.61). Since Cs+ tends to be enriched at the interface, TFSI- and PF6 - in situ form LiF-Li3N-Li2O-Li2S enriched solid electrolyte interface with electrostatic shielding effects. The assembled ASSLBs without adding interfacial wetting agent exhibit outstanding rate capability (LiFePO4: 147.44 mAh g-1@1 C and 107.41mAhg-1@2 C) and cycling stability at 30 °C (LiFePO4:94.65 %@200cycles@0.5 C; LiNi0.5Co0.2Mn0.3O2: 94.31 %@200 cycles@0.3 C). This work proposes a concept of CCIE and reveals its mechanism in designing PICE with high ionic conductivity as well as high interfacial compatibility at near RT for high-performance ASSLBs.

6.
Adv Mater ; 36(14): e2311637, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38191995

ABSTRACT

Dendrite-free Zn metal anodes with high depth-of-discharge (DoD) and robust cycle performances are highly desired for the practical application of aqueous Zn-ion batteries. Herein, the zincophobic/hydrophilic nature of Metal-N-C through manipulating the electronic interactions between metal and coordination atoms is successfully reversed, thereby fabricating a zincophilic/hydrophobic asymmetric Zn-N3Py+1Pr-C (consisting of a Zn center coordinated with 3 pyridinic N atoms and 1 pyrrolic N atom) host, which realizes uniformed Zn deposition and a long lifespan with high DoD. The experimental and theoretical investigations demonstrate weakened interaction between pyrrolic N and metal center in the asymmetric Zn-N3Py+1Pr-C triggers downshift of the Zn 3d-band-center and a new localization nonbonding state in the N and C 2p-band, resulting in preferred Zn adsorption to water adsorption. Consequently, the asymmetric Zn-N3Py+1Pr-C host delivers small Zn nucleation overpotential and high Coulombic efficiency of 98.3% over 500 cycles. The symmetric cells with Zn-N3Py+1Pr-C@Zn anode demonstrate 500 h dendrite-free cycles at DoD up to 50%. The Zn-N3Py+1Pr-C@Zn/S-PANI full cell also shows a robust long-term cycle performance of 1000 cycles at 10 A g-1. This strategy of constructing zincophilic/hydrophobic Metal-N-C may open up their application for the dendrite-free metal anode.

7.
Angew Chem Int Ed Engl ; 63(1): e202315856, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37985233

ABSTRACT

Solid-state batteries (SSBs) based on Li-rich Mn-based oxide (LRMO) cathodes attract much attention because of their high energy density as well as high safety. But their development was seriously hindered by the interfacial instability and inferior electrochemical performance. Herein, we design a three-dimensional foam-structured GaN-Li composite anode and successfully construct a high-performance SSB based on Co-free Li1.2 Ni0.2 Mn0.6 O2 cathode and Li6.5 La3 Zr1.5 Ta0.5 O12 (LLZTO) solid electrolyte. The interfacial resistance is considerably reduced to only 1.53â€…Ω cm2 and the assembled Li symmetric cell is stably cycled more than 10,000 h at 0.1-0.2 mA cm-2 . The full battery shows a high initial capacity of 245 mAh g-1 at 0.1 C and does not show any capacity degradation after 200 cycles at 0.2 C (≈100 %). The voltage decay is well suppressed and it is significantly decreased from 2.96 mV/cycle to only 0.66 mV/cycle. The SSB also shows a very high rate capability (≈170 mAh g-1 at 1 C) comparable to a liquid electrolyte-based battery. Moreover, the oxygen anion redox (OAR) reversibility of LRMO in SSB is much higher than that in liquid electrolyte-based cells. This study offers a distinct strategy for constructing high-performance LRMO-based SSBs and sheds light on the development and application of high-energy density SSBs.

8.
Genomics ; 115(6): 110747, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37977331

ABSTRACT

Placopecten magellanicus (Gmelin, 1791), a deep-sea Atlantic scallop, holds significant commercial value as a benthic marine bivalve along the northwest Atlantic coast. Recognizing its economic importance, the need to reconstruct its genome assembly becomes apparent, fostering insights into natural resources and generic breeding potential. This study reports a high-quality chromosome-level genome of P. magellanicus, achieved through the integration of Illumina short read sequencing, PacBio HiFi sequencing, and Hi-C sequencing techniques. The resulting assembly spans 1778 Mb with a scaffold N50 of 86.71 Mb. An intriguing observation arises - the genome size of P. magellanicus surpasses that of its Pectinidae family peers by 1.80 to 2.46 times. Within this genome, 28,111 protein-coding genes were identified. Comparative genomic analysis involving five scallop species unveils the critical determinant of this expanded genome: the proliferation of repetitive sequences recently inserted, contributing to its enlarged size. The landscape of whole genome collinearity sheds light on the relationships among scallop species, enhancing our broader understanding of their genomic framework. This genome provides genomic resources for future molecular biology research on scallops and serves as a guide for the exploration of longevity-related genes in scallops.


Subject(s)
Bivalvia , Pectinidae , Animals , Pectinidae/genetics , Bivalvia/genetics , Seafood , Genome Size , Chromosomes/genetics
9.
Theranostics ; 13(13): 4376-4390, 2023.
Article in English | MEDLINE | ID: mdl-37649611

ABSTRACT

Background: Effective preservation strategies to ameliorate lung graft ischaemia injury are needed to rescue 'extended criteria' or 'marginal' lung grafts, and to improve recipient outcomes after transplantation. Methods: Lung grafts from male Lewis rats were extracted after 40 min of cardiocirculatory death, and healthy human lung tissues were collected from patients undergoing a lobectomy. Lung samples were then preserved in a 4°C preservation solution supplemented with 0.1 nM Dexmedetomidine (Dex, α2-adrenoceptor agonist) for 16 h. In vitro, human lung epithelial A549 cells were preserved in the 4°C preservation solution with 0.1 nM Dex for 24 h, then re-cultured in the cell culture medium at 37°C to mimic the clinical scenario of cold ischaemia and warm reperfusion. Lung tissues and cells were then analysed with various techniques including western blot, immunostaining and electron microscope, to determine injuries and the protection of Dex. Results: Prolonged warm ischaemia after cardiocirculatory death initiated Rip kinase-mediated necroptosis, which was exacerbated by cold storage insult and enhanced lung graft injury. Dex supplementation significantly reduced necroptosis through upregulating Nrf2 activation and reducing oxidative stress, thereby significantly improving lung graft morphology. Dex treatment also attenuated endoplasmic reticulum stress, stabilised lysosomes and promoted cell membrane resealing function, consequently reducing cell death and inflammatory activation after hypothermic hypoxia-reoxygenation in A549 cells. Conclusions: Inhibition of regulated cell death through Dex supplementation to the graft preservation solution improves allograft quality which may aid to expand the donor lung pool and enhance lung transplant outcomes per se.


Subject(s)
Lung Transplantation , Regulated Cell Death , Rats , Animals , Humans , Male , Rats, Inbred Lew , Necroptosis , Lung
10.
ACS Nano ; 17(17): 17476-17488, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37606308

ABSTRACT

Rechargeable zinc-air batteries (ZABs) have been considered promising as next-generation sustainable energy storage devices; however, their large-scale deployment is hampered by the unsatisfactory cyclic lifespan. Employing neutral and mild-acidic electrolytes is effective in extending the cyclability, but the rapid performance degradation of the bifunctional catalysts owing to different microenvironmental requirements of the alternative oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is still a serious limitation of their cyclic life. Herein, we propose a "self-decoupling" strategy to significantly improve the stability of the bifunctional catalysts by constructing a smart interface in the bifunctional air electrode. This smart interface, containing a resistance-switchable sulfonic acid doped polyaniline nanoarray interlayer, is nonconductive at high potential but conductive at low potential, which enables spontaneous electrochemical decoupling of the bifunctional catalyst for the ORR and OER, respectively, and thus protects it from degradation. The resulting self-decoupled mild-acidic ZAB delivers stable cyclic performances in terms of a negligible energy efficiency loss of 0.015% cycle-1 and 3 times longer cycle life (∼1400 h) compared with the conventional mild-acidic ZAB using a normal bifunctional air electrode and the same low-cost ZnCo phosphide/nitrogen-doped carbon bifunctional catalyst. This work provides an effective strategy for tolerating alternative oxidation-reduction reactions and emphasizes the importance of smart nanostructure design for more sustainable batteries.

11.
Inorg Chem ; 62(24): 9314-9323, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37285310

ABSTRACT

P2-type Na0.67Mn0.5Fe0.5O2 (MF) has attracted great interest as a promising cathode material for sodium-ion batteries (SIBs) due to its high specific capacity and low cost. However, its poor cyclic stability and rate performance hinder its practical applications, which is largely related to lattice oxygen instability. Here, we propose to coat the cathode of SIBs with Li2ZrO3, which realizes the "three-in-one" modification of Li2ZrO3 coating and Li+, Zr4+ co-doping. The synergy of Li2ZrO3 coating and Li+/Zr4+ doping improves both the cycle stability and rate performance, and the underlying modification mechanism is revealed by a series of characterization methods. The doping of Zr4+ increases the interlayer spacing of MF, reduces the diffusion barrier of Na+, and reduces the ratio of Mn3+/Mn4+, thus inhibiting the Jahn-Teller effect. The Li2ZrO3 coating layer inhibits the side reaction between the cathode and the electrolyte. The synergy of Li2ZrO3 coating and Li+, Zr4+ co-doping enhances the stability of lattice oxygen and the reversibility of anionic redox, which improves the cycle stability and rate performance. This study provides some insights into stabilizing the lattice oxygen in layered oxide cathodes for high-performance SIBs.

12.
Natl Sci Rev ; 10(6): nwad056, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37181084

ABSTRACT

The Zhurong rover of the Tianwen-1 mission landed in southern Utopia Planitia, providing a unique window into the evolutionary history of the Martian lowlands. During its first 110 sols, Zhurong investigated and categorized surface targets into igneous rocks, lithified duricrusts, cemented duricrusts, soils and sands. The lithified duricrusts, analysed by using laser-induced breakdown spectroscopy onboard Zhurong, show elevated water contents and distinct compositions from those of igneous rocks. The cemented duricrusts are likely formed via water vapor-frost cycling at the atmosphere-soil interface, as supported by the local meteorological conditions. Soils and sands contain elevated magnesium and water, attributed to both hydrated magnesium salts and adsorbed water. The compositional and meteorological evidence indicates potential Amazonian brine activities and present-day water vapor cycling at the soil-atmosphere interface. Searching for further clues to water-related activities and determining the water source by Zhurong are critical to constrain the volatile evolution history at the landing site.

13.
Mater Horiz ; 10(8): 2958-2967, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37166133

ABSTRACT

Neutral/near-neutral electrolyte rechargeable zinc-air batteries (NN-ZABs) with long cycling lifetime are an evolutionary design of the conventional alkaline ZABs, but the extremely sluggish kinetics of oxygen electrocatalysis in mild pH solutions in the air-cathode has notably affected the energy efficiency of the NN-ZABs. Herein, we present a dynamic self-catalysis as the air-cathode chemistry to boost the energy efficiency of NN-ZABs, which is based on in situ reversible generation of highly active electrocatalysts from the electrolyte during the discharge and charge operations of ZABs, respectively. Two reversible redox reactions of Cu(I)/Cu(II) and Mn(II)/Mn(IV) in the NH4Cl-ZnCl2-based electrolyte are integrated with oxygen electrocatalysis in the air-cathode to in situ generate Cu(I)-O-Cl deposits during discharging and Cu-MnO2 deposits during charging, which directly catalyze the subsequent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively. The in situ generated electrocatalysts deliver good oxygen electrocatalytic activities due to their distinctive surface structures and can be dissolved by potential reversal in a subsequent battery operation. The NN-ZAB designed as such delivers a record-high energy efficiency of 69.0% and a cycling life of 1800 h with an areal capacity of 10 mA h cm-2, surpassing the performances of NN-ZABs with preloaded electrocatalysts reported to date.

14.
Nanomaterials (Basel) ; 13(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37049269

ABSTRACT

Artificial nanostructures with large optical chiral responses have been intensively investigated recently. In this work, we propose a diffractive circular dichroism enhancement technique using stereoscopic plasmonic molecule structures. According to the multipole expansion analysis, the z-component of the electric dipole becomes the dominant chiral scattering mechanism during the interaction between an individual plasmonic molecule and the plane wave at a grazing angle. For a periodical structure with the designed plasmonic molecule, large diffractive circular dichroism can be obtained, which can be associated with the Wood-Rayleigh anomaly. Such a diffractive circular dichroism enhancement is verified by the good agreement between numerical simulations and experimental results. The proposed approach can be potentially used to develop enhanced spectroscopy techniques to measure chiral information, which is very important for fundamental physical and chemical research and bio-sensing applications.

15.
Small ; 19(33): e2301391, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086134

ABSTRACT

Lithium-oxygen (Li-O2 ) batteries have received extensive attention owing to ultrahigh theoretical energy density. Compared to typical discharge product Li2 O2 , LiOH has attracted much attention for its better chemical and electrochemical stability. Large-scale applications of Li-O2 batteries with LiOH chemistry are hampered by the serious internal shuttling of the water additives with the desired 4e- electrochemical reactions. Here, a metal organic framework-derived "water-trapping" single-atom-Co-N4 /graphene catalyst (Co-SA-rGO) is provided that successfully mitigates the water shuttling and enables the direct 4e- catalytic reaction of LiOH in the aprotic Li-O2 battery. The Co-N4 center is more active toward proton-coupled electron transfer, benefiting - direction 4e- formation of LiOH. 3D interlinked networks also provide large surface area and mesoporous structures to trap ≈12 wt% H2 O molecules and offer rapid tunnels for O2 diffusion and Li+ transportation. With these unique features, the Co-SA-rGO based Li-O2 battery delivers a high discharge platform of 2.83 V and a large discharge capacity of 12 760.8 mAh g-1 . Also, the battery can withstand corrosion in the air and maintain a stable discharge platform for 220 cycles. This work points out the direction of enhanced electron/proton transfer for the single-atom catalyst design in Li-O2 batteries.

16.
J Am Chem Soc ; 145(18): 10208-10219, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37098172

ABSTRACT

High-voltage LiCoO2 (LCO) attracts great interest because of its large specific capacity, but it suffers from oxygen release, structural degradation, and quick capacity drop. These daunting issues root from the inferior thermodynamics and kinetics of the triggered oxygen anion redox (OAR) at high voltages. Herein, a tuned redox mechanism with almost only Co redox is demonstrated by atomically engineered high-spin LCO. The high-spin Co network reduces the Co/O band overlap, eliminates the adverse phase transition of O3 → H1-3, delays the exceeding of the O 2p band over the Fermi level, and suppresses excessive O → Co charge transfer at high voltages. This function intrinsically promotes Co redox and restrains O redox, fundamentally addressing the issues of O2 release and coupled detrimental Co reduction. Moreover, the chemomechanical heterogeneity caused by different kinetics of Co/O redox centers and the inferior rate performance limited by slow O redox kinetics is simultaneously improved owing to the suppression of slow OAR and the excitation of fast Co redox. The modulated LCO delivers ultrahigh rate capacities of 216 mAh g-1 (1C) and 195 mAh g-1(5C), as well as high capacity retentions of 90.4% (@100 cycles) and 86.9% (@500 cycles). This work sheds new light on the design for a wide range of O redox cathodes.

17.
Angew Chem Int Ed Engl ; 62(22): e202302655, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36988084

ABSTRACT

Sulfide electrolytes with high ionic conductivity hold great promise for all-solid-state lithium batteries. However, the parasitic redox reactions between sulfide electrolyte and Li metal result in interfacial instability and rapid decline of the battery performance. Herein, a redox-resistible Li6 PS5 Cl (LPSC) electrolyte is created by regulating the electron distribution in LPSC with Mg and F incorporation. The introduction of Mg triggers the electron agglomeration around S atom, inhibiting the electron acceptance from Li, and F generates the self-limiting interface, which hinders the redox reactions between LPSC and Li metal. This redox-resistible Li6 PS5 Cl-MgF2 electrolyte therefore presents a high critical current density (2.3 times that of pristine electrolyte). The LiCoO2 /Li6 PS5 Cl-MgF2 /Li cell shows an outstanding cycling stability (93.3 %@100 cycles at 0.2 C). This study highlights the electronic structure modulation to address redox issues on sulfide-based lithium batteries.

18.
Adv Sci (Weinh) ; 10(11): e2207056, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36793257

ABSTRACT

Garnet-type solid-state electrolyte (SSE) Li6.5 La3 Zr1.5 Ta0.5 O12 attracts great interest due to its high ion conductivity and wide electrochemical window. But the huge interfacial resistance, Li dendrite growth, and low critical current density (CCD) block the practical applications. Herein, a superlithiophilic 3D burr-microsphere (BM) interface layer composed of ionic conductor LiF-LaF3 is constructed in situ to achieve a high-rate and ultra-stable solid-state lithium metal battery. The 3D-BM interface layer with a large specific surface area shows a superlithiophilicity and its contact angle with molten Li is only 7° enabling the facile infiltration of molten Li. The assembled symmetrical cell reaches one of the highest CCD (2.7 mA cm-2 ) at room temperature, an ultra-low interface impedance of 3 Ω cm2 , and a super-long cycling stability of 12 000 h at 0.1-1.5 mA cm-2 without Li dendrite growth. The solid-state full cells with 3D-BM interface show outstanding cycling stability (LiFePO4 : 85.4%@900 cycles@1 C; LiNi0.8 Co0.1 Mn0.1 O2 :89%@200 cycles@0.5 C) and a high rate capacity (LiFePO4 :135.5mAh g-1 at 2 C). Moreover, the designed 3D-BM interface is quite stable after 90 days of storage in the air. This study offers a facile strategy to address the critical interface issues and accelerate the practical application of garnet-type SSE in high performance solid-state lithium metal batteries.

19.
Adv Sci (Weinh) ; 10(9): e2206442, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36698260

ABSTRACT

Despite the low cost and high capacity of Ni-rich layered oxides (NRLOs), their widespread implementation in electric vehicles is hindered by capacity decay and O release. These issues originate from chemo-mechanical heterogeneity, which is mainly related to oxygen anion redox (OAR). However, what to tune regarding OAR in NRLOs and how to tune it remains unknown. In this study, a close correlation between the OAR chemistry and Li/Ni antisite defects is revealed. Experiments and calculations show the opposite effects of aggregative and dispersive Li/Ni antisite defects on the NiO6 configuration and Ni spin state in NRLOs. The resulting broad or narrow spans for the energy bands caused by spin states lead to different OAR chemistries. By tuning the Li/Ni antisite defects to be dispersive rather than aggregative, the threshold voltage for triggering OAR is obviously elevated, and the generation of bulk-O2 -like species and O2 release at phase transition nodes is fundamentally restrained. The OAR is regulated from irreversible to reversible, fundamentally addressing structural degradation and heterogeneity. This study reveals the interaction of the Li/Ni antisite defect/OAR chemistry/chemo-mechanical heterogeneity and presents some insights into the design of high-performance NRLO cathodes.

20.
New Phytol ; 238(1): 155-168, 2023 04.
Article in English | MEDLINE | ID: mdl-36527238

ABSTRACT

In angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant. Loss function of DHQS in FG interrupts pollen tube funicular guidance, suggesting that the guiding signal is generated from FG. We show the evidence that the capacity of funicular guidance is established during FG functional specification after the establishment of cell identity. Specific expression of DHQS in the synergid cells, central cells, or egg cells can rescue funicular guidance defect in dhqs/+, indicating all the female germ unit cells are involved in the funicular guidance. The finding reveals that the attracting signal of pollen tube funicular guidance was generated at a site and stage manner and provides novel clue to locate and search for the signal.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pollen Tube , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ovule/metabolism , Pollen Tube/metabolism , Pollination/physiology , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...