Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38998439

ABSTRACT

The effect of the addition of alkali earth element Ca on the microstructure and mechanical properties of extruded AZ91-0.4Ce-xCa (x = 0, 0.4, 0.8, 1.2 wt.%) alloys was studied by using scanning electron microscopy, transmission electron microscopy, and tensile tests. The results showed that the addition of Ca could significantly refine the second phase and grain size of the extruded AZ91-0.4Ce alloy. The refinement effect was most obvious when 0.8 wt.% of Ca was added, and the recrystallized grain size was 4.75 µm after extrusion. The addition of Ca resulted in the formation of a spherical Al2Ca phase, which effectively suppressed the precipitation of the ß-Mg17Al12 phase, promoted dynamic recrystallization and grain refinement, impeded dislocation motion, and exerted a positive influence on the mechanical properties of the alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of the AZ91-0.4Ce-0.8Ca alloy were 238.7 MPa, 338.3 MPa, and 10.8%, respectively.

2.
Opt Lett ; 49(5): 1365-1368, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427014

ABSTRACT

In this work, GeSn lateral p-i-n photodetectors (PDs) on insulator were fabricated with an active GeSn layer grown by the rapid melting growth (RMG) method. Taking advantages of the defect-free GeSn strips, GeSn PDs with 5.3% Sn content have low dark current and high responsivities, which are about 0.48, 0.47, and 0.24 A/W for wavelengths of 1550, 1630, and 2000 nm, respectively. The radio frequency of the lateral GeSn PDs was also studied and a 3 dB bandwidth of about 3.8 GHz was achieved. These results indicate that the GeSn grown by the rapid melting growth method is capable of fabricating high-performance Si-based optoelectronic devices.

3.
Langmuir ; 40(8): 4489-4495, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38369881

ABSTRACT

The efficient removal of radioactive iodine from an aqueous solution is largely dependent on the adsorbent materials employed. In this work, we report a calix[4]pyrrole-based nanofilm and its application for the rapid removal of iodine from water. The nanofilm was synthesized through a confined dynamic condensation of tetra hydrazide calix[4]pyrrole with 1,3,5-tri-(4-formylphenyl) aldehyde at the air/dimethyl sulfoxide (DMSO) interface. The thickness of the obtained nanofilm is ∼35 nm, enabling fast mass transfer and a high ratio of accessible binding sites for iodine. The pseudo-second-order rate constant of the nanofilm for iodine is ∼0.061 g g-1 min-1, 3 orders of magnitude higher than most reported adsorbent materials. Flow-through nanofiltration tests demonstrated that the nanofilm has an adsorption capacity of 1.48 g g-1, a high removal efficiency, and good reusability. The mechanism study revealed that the moieties of Schiff base, pyrrole, and aromatic rings play a key role for binding iodine. We believe this work provides not only a new strategy for the efficient removal of radioactive iodine from water but also new ideas for designing efficient iodine adsorbents.

4.
Adv Sci (Weinh) ; 11(12): e2307165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225747

ABSTRACT

Flexible and highly ultraviolet (UV) sensitive materials garner considerable attention in wearable devices, adaptive sensors, and light-driven actuators. Herein, a type of nanofilms with unprecedented fully reversible UV responsiveness are successfully constructed. Building upon this discovery, a new system for ultra-fast, sensitive, and reliable UV detection is developed. The system operates by monitoring the displacement of photoinduced macroscopic motions of the nanofilms based composite membranes. The system exhibits exceptional responsiveness to UV light at 375 nm, achieving remarkable response and recovery times of < 0.3 s. Furthermore, it boasts a wide detection range from 2.85 µW cm-2 to 8.30 mW cm-2, along with robust durability. Qualitative UV sensing is accomplished by observing the shape changes of the composite membranes. Moreover, the composite membrane can serve as sunlight-responsive actuators for artificial flowers and smart switches in practical scenarios. The photo-induced motion is ascribed to the cis-trans isomerization of the acylhydrazone bonds, and the rapid and fully reversible shape transformation is supposed to be a synergistic result of the instability of the cis-isomers acylhydrazone bonds and the rebounding property of the networked nanofilms. These findings present a novel strategy for both quantitative and qualitative UV detection.

5.
Opt Lett ; 48(23): 6148-6151, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039213

ABSTRACT

In this work, high-performance GeSn photodetectors with a Sn content gradient GeSn layer were fabricated on SOI substrate by CMOS-compatible process for C and L band telecommunication. The active GeSn layer has a Sn component increased from 9 to 10.7% with the controlled relaxation degree up to 84%. The responsivities of GeSn detectors at 1550 nm and 1630 nm are 0.47 A/W and 0.32 A/W under -4 V bias, respectively. Over 50 GHz 3 dB bandwidth with the eye pattern about 70 Gb/s was also evidenced at 1630 nm. These results indicate that the GeSn photodetectors have a promising application for extending the silicon photonics from C band to L band.

6.
Chem Sci ; 14(26): 7334-7345, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37416697

ABSTRACT

Although numerous genetic, chemical, and physical strategies have been developed to remodel the cell surface landscape for basic research and the development of live cell-based therapeutics, new chemical modification strategies capable of decorating cells with various genetically/non-genetically encodable molecules are still urgently needed. Herein, we describe a remarkably simple and robust chemical strategy for cell surface modifications by revisiting the classical thiazolidine formation chemistry. Cell surfaces harbouring aldehydes can be chemoselectively conjugated with molecules containing a 1,2-aminothiol moiety at physiological pH without the need to use any toxic catalysts and complicated chemical synthesis. Through the combined use of thiazolidine formation and the SpyCatcher-SpyTag system, we have further developed a SpyCatcher-SpyTag Chemistry Assisted Cell Surface Engineering (SpyCASE) platform, providing a modular approach for the construction of large protein-cell conjugates (PCCs) in their native state. Thiazolidine-bridged molecules can also be detached from the surface again through a biocompatible Pd-catalyzed bond scission reaction, enabling reversible modification of living cell surfaces. In addition, this approach allows us to modulate specific cell-cell interactions and generate NK cell-based PCCs to selectively target/kill several EGFR-positive cancer cells in vitro. Overall, this study provides an underappreciated but useful chemical tool to decorate cells with tailor-made functionalities.

7.
Angew Chem Int Ed Engl ; 62(1): e202214449, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36344440

ABSTRACT

Synthesizing large-area free-standing covalent organic framework (COF) films is of vital importance for their applications but is still a big challenge. Herein, we reported the synthesis of large metalloporphyrin-based COF films and their applications for oxygen electrocatalysis. The reaction of meso-benzohydrazide-substituted metal porphyrins with tris-aldehyde linkers afforded free-standing COF films at the liquid-air interface. These films can be scaled up to 3000 cm2 area and display great mechanical stability and structural integrity. Importantly, the Co-porphyrin-based films are efficient for electrocatalytic O2 reduction and evolution reactions. A flexible, all-solid-state Zn-air battery was assembled using the films and showed high performance with a charge-discharge voltage gap of 0.88 V at 1 mA cm-2 and high stability under bent conditions (0° to 180°). This work thus presents a strategy to synthesize functionalized COF films with high quality for uses in flexible electronics.

8.
Opt Express ; 30(23): 41943-41953, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36366658

ABSTRACT

In this paper, a carrier-injection electro-absorption modulator (EAM) at 2 µm is demonstrated on Ge-on-Si platform. The EAM shows a compact size and high modulation efficiency due to the strong free-carrier electroabsorption (FCEA) effect in Ge. A modulation depth of 40 dB can be obtained under the injection current of only 420 mA. Small-signal frequency response measurement is performed and a small-signal equivalent circuit model is proposed. Based on reflection coefficients and equivalent circuit, the frequency response of carrier-injection EAM is discussed in detail. The 500 Mbps open eye diagram verifies the data-processing capacity of our EAM at 2 µm wavelength for its application in biological, chemical molecular detection, and infrared imaging systems.

9.
Fish Shellfish Immunol ; 131: 77-83, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36195271

ABSTRACT

In the present study, a histone H2A (designed as RpH2A) was identified and characterized from clam Ruditapes philippinarum, and its open reading frame (ORF) was of 387 bp encoding a polypeptide of 128 amino acids. The deduced amino acid sequence of RpH2A shared high identities ranging from 57.1% to 96.1% with that of other identified H2A. The mRNA expression of RpH2A was up-regulated significantly after Vibrio anguillarum challenge. The recombinant RpH2A protein (rRpH2A) displayed significantly binding affinity to lipopolysaccharide (LPS) and peptidoglycan (PGN) in vitro, and also exhibited antimicrobial properties against Escherichia coli. In addition, the antimicrobial RpH2A was shown to co-localize with extracellular traps (ETs) released from hemocytes induced by E. coli, suggesting that RpH2A might contribute to eliminate invading bacteria in clam ETs. Altogether, our data revealed that RpH2A could function as antimicrobial peptides, which might play a crucial role in the immune responses of hemocytes ETs in clams.


Subject(s)
Bivalvia , Extracellular Traps , Vibrio , Animals , Histones , Escherichia coli , Anti-Bacterial Agents/pharmacology , Vibrio/physiology
10.
Opt Lett ; 47(17): 4315-4318, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048642

ABSTRACT

In this work, GeSn resonant cavity enhanced (RCE) p-i-n photodetectors (PDs) with 3.7% Sn content in a GeSn layer were fabricated on a silicon on insulator (SOI) substrate. The gold (Au) layer and the deposited SiO2 layer constitute the bottom reflector and top reflector of the RCE detectors, respectively. The GeSn RCE PD has three resonant peaks and its responsivity is improved about 4.5 times at 1630 nm, compared with GeSn PDs without a gold bottom mirror. The cutoff wavelength of GeSn RCE PDs is up to 1820 nm, while it is only 1730 nm for GeSn PDs without a gold reflector. The responsivity of RCE PDs at 1630 nm reaches 0.126 A/W and 3-dB bandwidth at about 36 GHz is achieved. These results indicate that the RCE structure is an effective approach for enhancing the GeSn PD performance operated at the L band.

11.
Opt Lett ; 47(17): 4463-4466, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048679

ABSTRACT

A high-performance waveguide-coupled lateral avalanche photodetector (APD) is experimentally demonstrated without silicon epitaxy and charge layer ion implantation. At the wavelength of 1550 nm, it shows a high responsivity of 48 A/W and a gain-bandwidth product (GBP) of 360 GHz. Wide-open eye diagrams at 25 Gbps can be observed at various avalanche gains. These outstanding performances indicate the proposed APD has great potential in high-speed optical transceivers for optical links.

12.
Opt Lett ; 47(13): 3263-3266, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35776601

ABSTRACT

A compact high-power germanium photodetector (Ge PD) is experimentally demonstrated by re-engineering light distribution in the absorber. Compared with a conventional Ge PD, the proposed structure shows a DC saturation photocurrent improved by 28.9% and 3 dB bandwidth as high as 49.5 GHz at 0.1 mA. Under the same photocurrent of 10.5 mA, the proposed Ge PD shows a 3 dB bandwidth of 11.1 GHz, which is almost double the conventional Ge PD (5.6 GHz). The 25 Gb/s eye-diagram measurement verifies the improved power handling capability. The compact size and manufacturing simplicity of this structure will enable new applications for integrated silicon photonics.

13.
J Colloid Interface Sci ; 612: 516-524, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35016015

ABSTRACT

The development of ultrasensitive, durable and anti-jamming strain-pressure sensors that can precisely distinguish different motions or deformations is crucial for health diagnosis and disaster monitoring, but it also remains a challenge. In this study, a self-standing, highly flexible and uniform nanofilm (CuPTFA) was fabricated via interfacial covalent condensation of a copper complex of 5,10,15,20-tetra(4-carboxyphenyl)-porphine tetrahydrizides (Cu-TPPNHNH2) and tris-(4-formylphenyl)-amine (TFA). The film was used as a sensing layer in a strain-pressure sensor with a sandwich-like structure of Au/I2@CuPTFA/Au. The sensor had a gauge factor exceeding 10000, a strain range of linear response of 3-7%, reliable output signals after 5000 times of continuous use, and extraordinary noise-screening capability. The strain-pressure sensor can differentiate moderate muscle hyper-spasm from subtle swaying, walking and vigorous sporting activities, with great potential for real-life applications.


Subject(s)
Porphyrins , Wearable Electronic Devices , Copper , Motion
14.
J Colloid Interface Sci ; 610: 368-375, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34923274

ABSTRACT

Preparation of nanofilms which are able to reject water-soluble low molecular weight organic compounds in nanofiltration remains to be a challenge. Herein, we report a new kind of self-standing, defect-free, robust, centimeter-sized and thickness controllable calix[4]pyrrole (C[4]P)-based nanofilms with excellent molecular sieving performance in nanofiltration. The nanofilms were prepared via confined dynamic condensation of the tetra-benzoyl-hydrazine derivative of calix[4]pyrrole (CPTBH) with 1,3,5-benzenetricarboxaldehyde (BTC) at the air/dimethyl sulfoxide (DMSO) interface. Nanofiltration tests under 2 bar pressure with porous polyethylene terephthalate (PET) as the support and a CsF treated CPTBH-BTC nanofilm (∼100 nm) as the selective layer depicted a water permeance of 15 L m-2h-1 bar-1 and a methanol permeance of 45 L m-2h-1 bar-1. High rejection rates (>95%) were found in aqueous solution for most of the tested dyes and pharmaceuticals. Remarkably, the composite membrane also demonstrated good separation performance in aqueous phase to some amino acids and organic dyes with molecular weights around 200 g/mol. High-performance nanofiltration in methanol was also realized. In this case, the molecular weight cutoff value is âˆ¼ 800 g/mol. These findings showed that introduction of macrocyclic hosts is an effective way to develop nanofilms with high solvent permeance but low molecular weight cutoff value.


Subject(s)
Membranes, Artificial , Pyrroles , Porosity , Solvents , Water
15.
Dev Comp Immunol ; 124: 104176, 2021 11.
Article in English | MEDLINE | ID: mdl-34153282

ABSTRACT

The 14-3-3 proteins play important roles in various cellular processes by binding to different ligands, but little is known about these proteins in mollusks. In this study, two 14-3-3 cDNAs were identified from the Pacific abalone Haliotis discus hannai (designated 14-3-3ζ and 14-3-3ε), possessing 59.40% identity with each other. Both genes were predominantly expressed in the gills of unchallenged abalones, and their mRNA signals could also be detected in several other tissues, including the mantle, hepatopancreas and ovary. However, after Vibrio harveyi challenge, hemocytes were induced significantly (p < 0.01). Meanwhile, phagocytosis was inhibited, but apoptosis, reactive oxygen species formation, and caspase 3 expression were significantly induced (p < 0.01), and they were all suppressed with 14-3-3ζ knockdown (p < 0.01). The differences were that silencing 14-3-3ε reverted the decline in the phagocytic rate derived from bacterial infection, while ROS formation was not influenced significantly. In addition, the expression levels of several antimicrobial peptide and proinflammatory cytokine genes were also decreased with the silencing of 14-3-3 genes. However, with the knockdown of 14-3-3ζ, the expression of 14-3-3ε was further significantly increased (p < 0.01), and vice versa. Overall, our results suggested that 14-3-3ζ and 14-3-3ε should play important roles in innate immunity against V. harveyi infection.


Subject(s)
14-3-3 Proteins/immunology , Gastropoda/immunology , Immunity, Innate , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Animals , Antimicrobial Peptides/genetics , Cytokines/genetics , Gene Expression Profiling , Hemocytes/immunology , Hemocytes/metabolism , Immunity, Cellular , Phagocytosis , Phylogeny , Protein Isoforms , Tissue Distribution , Vibrio/physiology
16.
ACS Appl Mater Interfaces ; 13(2): 3336-3348, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33356087

ABSTRACT

The modular construction of defect-free nanofilms with a large area remains a challenge. Herein, we present a scalable strategy for the preparation of calix[4]pyrrole (C[4]P)-based nanofilms through acryl hydrazone reaction conducted in a tetrahydrazide calix[4]pyrrole (CPTH)-based self-assembled layer at the air/DMSO interface. With this strategy, robust, regenerable, and defect-free nanofilms with an exceptionally large area (∼750 cm2) were constructed. The thickness and permeability of the film systems can be fine-tuned by varying the precursor concentration or by changing another building block. A typical nanofilm (C[4]P-TFB, ∼67 nm) depicted high water flux (39.9 L m-2 h-1 under 1 M Na2SO4), narrow molecular weight cut-off value (∼200 Da), and promising antifouling properties in the forward osmosis (FO) process. In addition, the nanofilms are stable over a wide pH range and tolerable to different organic solvents. Interestingly, the introduction of C[4]P endowed the nanofilms with both outstanding mechanical properties and unique group-selective separation capability, laying the foundation for wastewater treatment and pharmaceutical concentration.

17.
Opt Lett ; 45(6): 1358-1361, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32163965

ABSTRACT

A high-power germanium photodetector is designed and fabricated using a cold-wall ultrahigh vacuum chemical vapor deposition. A back-to-back dual-absorption structure improves high-power characteristics by reducing the space-charge effect. Compared to a typical p-i-n photodetector, the saturated photocurrent of the back-to-back dual-absorption photodetector is improved from 16.2 to 21.3 mA at $ - {3}\;{\rm V}$-3V. At a bias voltage of $ - {1}\;{\rm V}$-1V, the dark current is 1.31 µA. The optical responsivities are 0.31 and 0.52 A/W at 1550 and 1310 nm, respectively. The 3 dB bandwidth of 4.14 GHz is achieved at $ - {3}\;{\rm V}$-3V. Theoretically, the 3 dB bandwidth can be further optimized in future device fabrication.

18.
Opt Express ; 27(13): 18038-18043, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31252752

ABSTRACT

Ge0.998Pb0.002 photodetectors (PDs) with a GePb layer grown on n-type Ge (100) substrate by magnetron sputtering epitaxy were fabricated by complementary metal-oxide semiconductor (CMOS)-compatible technology. For Ge0.998Pb0.002 PDs, the room-temperature dark current density at -1 V was 3.3 A/cm2. At room temperature, the GePb PDs demonstrated a longwave cutoff of 2.5 µm and the optical responsivities of GePb PDs ranging from 1500 nm to 2000 nm were measured. A temperature dependence optical characterization of these detectors was conducted and temperature-dependent energy bandgaps of Ge0.998Pb0.002 were derived from the photocurrent spectra.

19.
Med Sci Monit ; 24: 4295-4304, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29933360

ABSTRACT

BACKGROUND Lead (Pb) is a widely used metal in modern industry and is regarded as a health hazard. Although lead-induced genotoxicity has been confirmed, the direct evidence that lead induces genotoxicity in human cells and its related mechanisms has not been fully elucidated. In this study, for the first time, we evaluated the genotoxicity induced by lead in human lymphoblastoid TK6 cells. MATERIAL AND METHODS The TK6 cells were incubated with various concentrations of Pb(Ac)2 for 6 h, 12 h, or 24 h. Cell viability was detected by CCK8 assay. Various biochemical markers were assessed by specific kits. Immunofluorescence assay was used to detect g-H2AX foci formation. The promoter methylation was assessed by methylation-specific PCR. The protein levels were determined by Western blot assay. RESULTS The results showed that after exposure to lead, cell viability was obviously decreased and γ-H2AX foci formation was significantly enhanced in TK6 cells. Moreover, the levels of 8-OHdG, ROS, MDA, and GSSG were increased, while the GSH level and SOD activity were decreased in lead-treated TK6 cells. The activation of the Nrf2-ARE signaling pathway was involved in lead-induced oxidative stress in TK6 cells. Finally, the expressions of DNA repair genes XRCC1, hOGG-1, BRCA1, and XPD were inhibited via enhancing their promoter methylation in TK6 cells after exposure to lead. CONCLUSIONS Taken together, our study provides the first published evidence that lead exposure results in DNA damage via promoting oxidative stress and the promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells.


Subject(s)
DNA Damage , DNA Methylation/genetics , DNA Repair/genetics , Lead/toxicity , Lymphocytes/metabolism , Lymphocytes/pathology , Oxidative Stress/drug effects , Promoter Regions, Genetic/genetics , Antioxidant Response Elements/genetics , DNA Repair/drug effects , Humans , Lymphocytes/drug effects , NF-E2-Related Factor 2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects
20.
Fish Shellfish Immunol ; 73: 30-36, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29208495

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) are indispensable molecules in innate immunity due to their prominent function in sensing and eliminating invading microorganisms. In the present study, a short type PGRP from razor clam Solen grandis (SgPGRP-S1) was recombinantly expressed and purified to investigate its potential function in innate immunity. As a pattern recognition receptor, recombinant SgPGRP-S1 (rSgPGRP-S1) specifically bind Lys-type and Dap-type peptidoglycan in vitro, but not lipopolysaccharide or ß-glucan. The peptidoglycan binding ability of rSgPGRP-S1 resulted in significant agglutination activity against Gram-negative Escherichia coli and Listonella anguillarum, as well as Gram-positive Micrococcus luteus. Furthermore, rSgPGRP-S1 was bactericidal, significantly suppressing the growth of both E. coli and Gram-positive Staphylococcus aureus. The protein also exhibited strong amidase activity and degraded bacterial peptidoglycan in the presence of Zn2+, suggesting amidase activity might contribute to SgPGRP-S1 antibacterial activity. These results indicate SgPGRP-S1 is multifunctional in innate immunity, mediating both immune recognition and bacteria elimination.


Subject(s)
Bacterial Shedding , Bivalvia/immunology , Carrier Proteins/genetics , Immunity, Innate/genetics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Agglutination Tests , Animals , Bivalvia/enzymology , Carrier Proteins/metabolism , Escherichia coli/physiology , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...