Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Am Chem Soc ; 146(23): 15860-15868, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814791

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a benchmark hole-transporting (p-type) polymer that finds applications in diverse electronic devices. Most of its success is due to its facile synthesis in water, exceptional processability from aqueous solutions, and outstanding electrical performance in ambient. Applications in fields like (opto-)electronics, bioelectronics, and energy harvesting/storage devices often necessitate the complementary use of both p-type and n-type (electron-transporting) materials. However, the availability of n-type materials amenable to water-based polymerization and processing remains limited. Herein, we present a novel synthesis method enabling direct polymerization in water, yielding a highly conductive, water-processable n-type conjugated polymer, namely, poly[(2,2'-(2,5-dihydroxy-1,4-phenylene)diacetic acid)-stat-3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione] (PDADF), with remarkable electrical conductivity as high as 66 S cm-1, ranking among the highest for n-type polymers processed using green solvents. The new n-type polymer PDADF also exhibits outstanding stability, maintaining 90% of its initial conductivity after 146 days of storage in air. Our synthetic approach, along with the novel polymer it yields, promises significant advancements for the sustainable development of organic electronic materials and devices.

2.
Angew Chem Int Ed Engl ; : e202407273, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770935

ABSTRACT

A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~ 70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~ 10 - 140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions, will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.

3.
Adv Sci (Weinh) ; : e2401252, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605686

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) based on vanadium oxides or sulfides are promising candidates for large-scale rechargeable energy storage due to their ease of fabrication, low cost, and high safety. However, the commercial application of vanadium-based electrode materials has been hindered by challenging problems such as poor cyclability and low-rate performance. To this regard, sophisticated nanostructure engineering technology is used to adeptly incorporate VS2 nanosheets into the MXene interlayers to create a stable 2D heterogeneous layered structure. The MXene nanosheets exhibit stable interactions with VS2 nanosheets, while intercalation between nanosheets effectively increases the interlayer spacing, further enhancing their stability in AZIBs. Benefiting from the heterogeneous layered structure with high conductivity, excellent electron/ion transport, and abundant reactive sites, the free-standing VS2/Ti3C2Tz composite film can be used as both the cathode and the anode of AZIBs. Specifically, the VS2/Ti3C2Tz cathode presents a high specific capacity of 285 mAh g-1 at 0.2 A g-1. Furthermore, the flexible Zn-metal free in-plane VS2/Ti3C2Tz//MnO2/CNT AZIBs deliver high operation voltage (2.0 V) and impressive long-term cycling stability (with a capacity retention of 97% after 5000 cycles) which outperforms almost all reported Vanadium-based electrodes for AZIBs. The effective modulation of the material structure through nanocomposite engineering effectively enhances the stability of VS2, which shows great potential in Zn2+ storage. This work will hasten and stimulate further development of such composite material in the direction of energy storage.

4.
J Colloid Interface Sci ; 659: 993-1002, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224631

ABSTRACT

The efficient capture of copper ions (Cu2+) in wastewater has dual significance in pollution control and resource recovery. Prussian blue analog (PBA)-based pseudocapacitive materials with open frameworks and abundant metal sites have attracted considerable attention as capacitive deionization (CDI) electrodes for copper removal. In this study, the efficiency of copper hexacyanoferrate (CuHCF) as CDI electrode for Cu2+ treating was evaluated for the first time upon the successful synthesis of copper hexacyanoferrate/carbon sheet combination (CuHCF/C) by introducing carbon sheet as conductive substrate. CuHCF/C exhibited significant pseudocapacitance and high specific capacitance (52.92 F g-1) through the intercalation, deintercalation, and coupling of Cu+/Cu2+ and Fe2+/Fe3+ redox pairs. At 0.8 an applied voltage and CuSO4 feed liquid concentration of 100 mg L-1, the salt adsorption capacity was 134.47 mg g-1 higher than those of most reported electrodes. Moreover, CuHCF/C demonstrated excellent Cu2+ selectivity in multi-ion coexisting solutions and in actual wastewater experiments. Density functional theory (DFT) calculations were employed to elucidate the mechanism. This study not only reveals the essence of Cu2+ deionization by PBAs pseudocapacitance with promising potential applications but also provides a new strategy for selecting efficient CDI electrodes for Cu2+ removal.

5.
Materials (Basel) ; 17(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276430

ABSTRACT

Research on perovskites has grown exponentially in the past decade due to the potential of methyl ammonium lead iodide in photovoltaics. Although these devices have achieved remarkable and competitive power conversion efficiency, concerns have been raised regarding the toxicity of lead and its impact on scaling up the technology. Eliminating lead while conserving the performance of photovoltaic devices is a great challenge. To achieve this goal, the research has been expanded to thousands of compounds with similar or loosely related crystal structures and compositions. Some materials are "re-discovered", and some are yet unexplored, but predictions suggest that their potential applications may go beyond photovoltaics, for example, spintronics, photodetection, photocatalysis, and many other areas. This short review aims to present the classification, some current mapping strategies, and advances of lead-free halide double perovskites, their derivatives, lead-free perovskitoid, and low-dimensional related crystals.

6.
Small ; 20(15): e2306360, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38010121

ABSTRACT

Nanoplatelets (NPLs) share excellent luminescent properties with their symmetric quantum dots counterparts and entail special characters benefiting from the shape, like the thickness-dependent bandgap and anisotropic luminescence. However, perovskite NPLs, especially those based on iodide, suffer from poor spectral and phase stability. Here, stable CsPbI3 NPLs obtained by accelerating the crystallization process in ambient-condition synthesis are reported. By this kinetic control, the rectangular NPLs into quasi-square NPLs are tuned, where enlarged width endows the NPLs with a lower surface-area-to-volume ratio (S/V ratio), leading to lower surficial energy and thus improved endurance against NPL fusion (cause for spectral shift or phase transformation). The accelerated crystallization, denoting the fast nucleation and short period of growth in this report, is enabled by preparing a precursor with complete transformation of PbI2 into intermediates (PbI3 -), through an additional iodide supplier (e.g., zinc iodide). The excellent color stability of the materials remains in the light-emitting diodes under various bias stresses.

7.
Adv Mater ; 36(9): e2307646, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37812198

ABSTRACT

Herein, a binary cathode interface layer (CIL) strategy based on the industrial solvent fractionated LignoBoost kraft lignin (KL) is adopted for fabrication of organic solar cells (OSCs). The uniformly distributed phenol moieties in KL enable it to easily form hydrogen bonds with commonly used CIL materials, i.e., bathocuproine (BCP) and PFN-Br, resulting in binary CILs with tunable work function (WF). This work shows that the binary CILs work well in OSCs with large KL ratio compatibility, exhibiting equivalent or even higher efficiency to the traditional CILs in state of art OSCs. In addition, the combination of KL and BCP significantly enhanced OSC stability, owing to KL blocking the reaction between BCP and nonfullerene acceptors (NFAs). This work provides a simple and effective way to achieve high-efficient OSCs with better stability and sustainability by using wood-based materials.

8.
Nat Commun ; 14(1): 8000, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044384

ABSTRACT

Conventional spectroscopies are not sufficiently selective to comprehensively understand the behaviour of trapped carriers in perovskite solar cells, particularly under their working conditions. Here we use infrared optical activation spectroscopy (i.e., pump-push-photocurrent), to observe the properties and real-time dynamics of trapped carriers within operando perovskite solar cells. We compare behaviour differences of trapped holes in pristine and surface-passivated FA0.99Cs0.01PbI3 devices using a combination of quasi-steady-state and nanosecond time-resolved pump-push-photocurrent, as well as kinetic and drift-diffusion models. We find a two-step trap-filling process: the rapid filling (~10 ns) of low-density traps in the bulk of perovskite, followed by the slower filling (~100 ns) of high-density traps at the perovskite/hole transport material interface. Surface passivation by n-octylammonium iodide dramatically reduces the number of trap states (~50 times), improving the device performance substantially. Moreover, the activation energy (~280 meV) of the dominant hole traps remains similar with and without surface passivation.

9.
Nat Commun ; 14(1): 8454, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38114560

ABSTRACT

Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.

10.
Environ Technol ; : 1-14, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37947044

ABSTRACT

A novel type of oxide material, high entropy oxide (Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)3O4 (MFO) composites with spinel structure were successfully synthesized by a simple solution combustion in this paper, and it was first applied to the degradation of antibiotic organic pollutants in water by photo-Fenton. SEM and BET characterization showed that the composite was porous and had a large specific surface area. XPS results showed that Fe, Mn, Cu, Co and Ni all participated in the redox reaction of the catalytic process. The redox pairs of Mn2+/Mn3+, Cu+/Cu2+, Co2+/Co3+, Ni2+/Ni3+ can accelerate the Fe2+/Fe3+ redox cycling in MFO to activate H2O2 and produce more reactive oxygen species. The catalytic performance of MFO composite was investigated using tetracycline hydrochloride (TC-HCl) as a model pollutant. The results displayed that the degradation rate of TC-HCl by MFO was 92.9% when the initial pH was 4, the dose of H2O2 was 50 mM, and the irradiation time was 60 min. The high entropy oxide MFO composites could build up an internal electric field, which restrains electron-hole recombination, improves the transfer of photogenerated charge carriers and maximize photocatalytic property. In addition, the free radical capture experiment determined that the main active species of the degradation reaction were e-, •O2- and •OH. The synergistic effect of the five components in the high entropy oxide strengthens lattice distortion and defects, increases oxygen vacancies, and thus has enhanced catalytic effect for TC-HCl degradation. This work shows that high entropy oxides have excellent catalytic performance for tetracycline organic pollutants, and it is speculated that high entropy oxides have good application prospects in the field of advanced oxidation technology for the degradation of organic pollutants.

11.
Sensors (Basel) ; 23(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37447649

ABSTRACT

Prosthetic joint infection (PJI) is a prevalent and severe complication characterized by high diagnostic challenges. Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished, owing to the substantial noise in CT images and the disparity in data volume between CT images and text data. This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques. It effectively merges features from CT scan images and patients' numerical text data via a Unidirectional Selective Attention (USA) mechanism and a graph convolutional network (GCN)-based Feature Fusion network. We evaluated the proposed method on a custom-built multimodal PJI dataset, assessing its performance through ablation experiments and interpretability evaluations. Our method achieved an accuracy (ACC) of 91.4% and an area under the curve (AUC) of 95.9%, outperforming recent multimodal approaches by 2.9% in ACC and 2.2% in AUC, with a parameter count of only 68 M. Notably, the interpretability results highlighted our model's strong focus and localization capabilities at lesion sites. This proposed method could provide clinicians with additional diagnostic tools to enhance accuracy and efficiency in clinical practice.


Subject(s)
Prosthesis-Related Infections , Humans , Prosthesis-Related Infections/diagnostic imaging , Area Under Curve , Culture , Electric Power Supplies , Tomography, X-Ray Computed
12.
Inorg Chem ; 62(19): 7413-7423, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37128775

ABSTRACT

Understanding the possible change in UO2 surface reactivity after exposure to oxidants is of key importance when assessing the impact of spent nuclear fuel dissolution on the safety of a repository for spent nuclear fuel. In this work, we have experimentally studied the change in UO2 reactivity after consecutive exposures to O2 or γ-radiation in aqueous solutions containing 10 mM HCO3-. The experiments show that the reactivity of UO2 toward O2 decreases significantly with time in a single exposure. In consecutive exposures, the reactivity also decreases from exposure to exposure. In γ-radiation exposures, the system reaches a steady state and the rate of uranium dissolution becomes governed by the radiolytic production of oxidants. Changes in surface reactivity can therefore not be observed in the irradiated system. The potential surface modification responsible for the change in UO2 reactivity was studied by XPS and UPS after consecutive exposures to either O2, H2O2, or γ-radiation in 10 mM HCO3- solution. The results show that the surfaces were significantly oxidized to a stoichiometric ratio of O/U of UO2.3 under all the three exposure conditions. XPS results also show that the surfaces were dominated by U(V) with no observed U(VI). The experiments also show that U(V) is slowly removed from the surface when exposed to anoxic aqueous solutions containing 10 mM HCO3-. The UPS results show that the outer ultrathin layer of the surfaces most probably contains a significant amount of U(VI). U(VI) may form upon exposure to air during the rinsing process with water prior to XPS and UPS measurements.

13.
ACS Appl Mater Interfaces ; 15(9): 12372-12382, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36820827

ABSTRACT

High-throughput production methods such as screen printing can bring stretchable electronics out of the lab into the market. Most stretchable conductor inks for screen printing are based on silver nanoparticles or flakes due to their favorable performance-to-cost ratio, but silver is prone to tarnishing and corrosion, thereby limiting the stability of such conductors. Here, we report on a cost-efficient and scalable approach to resolve this issue by developing screen printable inks based on silver flakes chemically coated by a thin layer of gold. The printed stretchable AgAu conductors reach a conductivity of 8500 S cm-1, remain conductive up to 250% strain, show excellent corrosion and tarnishing stability, and are used to demonstrate wearable LED and NFC circuits. The reported approach is attractive for smart clothing, as the long-term functionality of such devices is expected in a variety of environments.

14.
Materials (Basel) ; 16(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36676390

ABSTRACT

Mullite-cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO2 that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 µm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material-saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.

15.
Sci Total Environ ; 856(Pt 1): 158839, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36155030

ABSTRACT

Bio-cathode Microbial electrolysis cell (MEC) has been widely discovered for heavy metals removal and hydrogen production. However, low electron transfer efficiency and heavy metal toxicity limit MEC treatment efficiency. In this study, ZIF-67 was introduced to modify Sulfate-reducing bacteria (SRB) bio-cathode to enhance the bioreduction of sulfate and Antimony (Sb) with hydrogen production in the MEC. ZIF-67 modified bio-cathode was developed from a bio-anode microbial fuel cell (MFC) by operating with an applied voltage of 0.8 V to reverse the polarity. Cyclic voltammetry, linear sweep voltammetry and electrochemical impedance were done to confirm the performance of the ZIF-67 modified SRB bio-cathode. The synergy reduction of sulfate and Sb was accomplished by sulfide metal precipitation reaction from SRB itself. Maximum sulfate reduction rate approached 93.37 % and Sb removal efficiency could reach 92 %, which relies on the amount of sulfide concentration generated by sulfate reduction reaction, with 0.923 ± 0.04 m3 H2/m3 of hydrogen before adding Sb and 0.857 m3 H2/m3 of hydrogen after adding Sb. The hydrogen was mainly produced in this system and the result of gas chromatography (GC) indicated that 73.27 % of hydrogen was produced. Meanwhile the precipitates were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy to confirm Sb2S3 was generated from Sb (V).


Subject(s)
Bioelectric Energy Sources , Desulfovibrio , Metals, Heavy , Electrolysis/methods , Electrodes , Bioelectric Energy Sources/microbiology , Sulfates/chemistry , Hydrogen/chemistry , Sulfides/chemistry
16.
Environ Technol ; : 1-14, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36469642

ABSTRACT

A sequence of zeolite carriers (Carrier = ZSM-5, Small crystal ZSM-5, MCM-41, SBA-15) were used to support active metals Mn-Ce, which have presented an enormous potential for plasma oxidation of toluene in air. The prepared samples were detected by means of N2 adsorption-desorption, SEM, XPS, H2-TPR, etc. Through the activity evaluation in the Non-thermal Plasma Reactor, we found that the catalysts with different carriers showed distinct degradation activities. The performance of mesoporous supported catalysts was better than that of microporous catalysts, of which MCM-41 performed best. 96.3% of toluene can be decomposed, and 97.3% of degraded toluene converted into final products CO2 completely at the initial concentration of 1000 ppm and SIE of 9 kJ/L. From the results, we can see that the appropriate carrier is conducive to maximizing the efficiency of the active metal, and Mn-Ce/MCM-41 got the best performance in the plasma catalysis for toluene abatement.

17.
Biosens Bioelectron ; 218: 114742, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36201997

ABSTRACT

The tremendous growth of disposable electrode-based portable devices for point-of-care testing requires mass production of disposable electrodes in a low-cost and sustainable manner. Here, we demonstrate a green route for the conversion of biomass lignin, patterning, and reduction of the lignin-derived graphene electrodes by sequential laser lithography, water lift-off and sodium borohydride (NaBH4) treatment, and their use for electrochemical lactate biosensors. Energy-saving and localized laser lithography converted the aromatic ring-rich lignin into porous laser-induced graphene (LIG). The conductivity and attachment of the LIG to the substrate were optimized in a factorial experiment with laser power and scan speed as variables. Characterization results revealed the conversion of partial heteroatoms (e.g., Na, S, O) into granular inorganic compounds on the LIG surface under laser treatment. Water was used as an eco-friendly solvent for the patterning of the LIG (P-LIG) by a lift-off process, where the inorganic residues and un-reacted lignin were dissolved, exposing the macro-/micro-pores in the P-LIG. NaBH4 induced a reduction of the P-LIG (P-rLIG) resulting in improved electrochemical kinetics with lower charge transfer resistance (27.3 Ω) compared to the LIG (248.1 Ω) and the P-LIG (61.4 Ω). The porous P-rLIG served as a 3D electrode for the deposition of Prussian blue and lactate oxidase for disposable electrochemical lactate biosensors, delivering a good analytical performance towards lactate detection with a linear range up to 16 mM and a high sensitivity (1.21 µA mM-1). These lignin-derived disposable electrodes, utilizing renewable resources together with low-energy consumption fabrication and patterning, may contribute to the sustainable manufacturing of biosensors for point-of-care and point-of-use applications.


Subject(s)
Biosensing Techniques , Graphite , Graphite/chemistry , Biosensing Techniques/methods , Lignin , Electrodes , Water , Lactates , Solvents
18.
Adv Sci (Weinh) ; 9(30): e2203681, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36031391

ABSTRACT

Perovskite solar cells (PSCs) suffer from significant nonradiative recombination at perovskite/charge transport layer heterojunction, seriously limiting their power conversion efficiencies. Herein, solution-processed chromium multioxide (CrOx ) is judiciously selected to construct a MAPbI3 /CrOx /Spiro-OMeTAD hole-selective heterojunction. It is demonstrated that the inserted CrOx not only effectively reduces defect sites via redox shuttle at perovskite contact, but also decreases valence band maximum (VBM)-HOMO offset between perovskite and Spiro-OMeTAD. This will diminish thermionic losses for collecting holes and thus promote charge transport across the heterojunction, suppressing both defect-assisted recombination and interface carrier recombination. As a result, a remarkable improvement of 21.21% efficiency with excellent device stability is achieved compared to 18.46% of the control device, which is among the highest efficiencies for polycrystalline MAPbI3 based n-i-p planar PSCs reported to date. These findings of this work provide new insights into novel charge-selective heterojunctions for further enhancing efficiency and stability of PSCs.

19.
Macromolecules ; 55(16): 7294-7302, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36034325

ABSTRACT

Ladder-type conjugated polymers exhibit a remarkable performance in (opto)electronic devices. Their double-stranded planar structure promotes an extended π-conjugation compared to inter-ring-twisted analogues, providing an excellent basis for exploring the effects of charge localization on polaron formation. Here, we investigated alkali-metal n-doping of the ladder-type conjugated polymer (polybenzimidazobenzophenanthroline) (BBL) through detailed in situ spectroscopic and electrical characterizations. Photoelectron spectroscopy and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy indicate polaron formation upon potassium (K) doping, which agrees well with theoretical predictions. The semiladder BBB displays a similar evolution in the valence band with the appearance of two new features below the Fermi level upon K-doping. Compared to BBL, distinct differences appear in the UV-vis-NIR spectra due to more localized polaronic states in BBB. The high conductivity (2 S cm-1) and low activation energy (44 meV) measured for K-doped BBL suggest disorder-free polaron transport. An even higher conductivity (37 S cm-1) is obtained by changing the dopant from K to lithium (Li). We attribute the enhanced conductivity to a decreased perturbation of the polymer nanostructure induced by the smaller Li ions. These results highlight the importance of polymer chain planarity and dopant size for the polaronic state in conjugated polymers.

20.
J Colloid Interface Sci ; 628(Pt A): 652-662, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35940149

ABSTRACT

Air cathode microbial fuel cell (AC-MFC) cannot be used on a large scale because of its low oxygen reduction reaction (ORR) efficiency. Despite the fact that bimetallic catalysts can greatly enhance the oxygen reduction rate by regulating the electronic structure of the active site, the flaws of insufficient exposure of the active site and easy metal agglomeration limit its catalytic activity. Herein, we report on the preparation of a stable heteroatomic substrate using a copper material organic framework as a precursor, covered by Fe-based active sites. As a result of dipole-dipole interactions, the reduced product Fe2+ forms a weak Fe-O surface that is conducive to the adsorption of active substances. The presence of Fe0 enhances the electrical conductivity of the catalytic, thus promoting ORR efficiency. Through redox coupling, the D-band center of Fe at FeCu@CN is optimized and brought close to the Fermi level to facilitate electron transfer. Notably, FeCu@CN demonstrates a superior power density of 2796.23 ± 278.58 mW m-3, far exceeding that of Pt/C (1363.93 ± 102.56 mW m-3), in the application of microbial fuel cells (MFCs). Meanwhile, the MFC-loaded FeCu@CN maintains excellent stability and outstanding output voltage after 1000 h, which provides feasibility for large-scale application.


Subject(s)
Bioelectric Energy Sources , Carbon/chemistry , Copper , Electrodes , Nitrogen/chemistry , Oxygen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...