Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Mol Plant ; 17(6): 972-985, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38685707

ABSTRACT

Volatilomics is essential for understanding the biological functions and fragrance contributions of plant volatiles. However, the annotation coverage achieved using current untargeted and widely targeted volatomics (WTV) methods has been limited by low sensitivity and/or low acquisition coverage. Here, we introduce WTV 2.0, which enabled the construction of a high-coverage library containing 2111 plant volatiles, and report the development of a comprehensive selective ion monitoring (cSIM) acquisition method, including the selection of characteristic qualitative ions with the minimal ion number for each compound and an optimized segmentation method, that can acquire the smallest but sufficient number of ions for most plant volatiles, as well as the automatic qualitative and semi-quantitative analysis of cSIM data. Importantly, the library and acquisition method we developed can be self-expanded by incorporating compounds not present in the library, utilizing the obtained cSIM data. We showed that WTV 2.0 increases the median signal-to-noise ratio by 7.6-fold compared with the untargeted method, doubled the annotation coverage compared with the untargeted and WTV 1.0 methods in tomato fruit, and led to the discovery of menthofuran as a novel flavor compound in passion fruit. WTV 2.0 is a Python library with a user-friendly interface and is applicable to profiling of volatiles and primary metabolites in any species.


Subject(s)
Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Plants/metabolism , Plants/chemistry
3.
Brain Lang ; 249: 105379, 2024 02.
Article in English | MEDLINE | ID: mdl-38241856

ABSTRACT

Semantic relations include "taxonomic" relations based on shared features and "thematic" relations based on co-occurrence in events. The "dual-hub" account proposes that the anterior temporal lobe (ATL) is functionally specialized for taxonomic relations and the inferior parietal lobule (IPL) for thematic relations. This study examined this claim by analyzing the intra- and inter-region phase synchronization of intracranial EEG data from electrodes in the ATL, IPL, and two subregions of the semantic control network: left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG). Ten participants with epilepsy completed a semantic relatedness judgment task during intracranial EEG recording and had electrodes in at least one hub and at least one semantic control region. Theta band phase synchronization was partially consistent with the dual-hub account: synchronization between the ATL and IFG/pMTG increased when processing taxonomic relations, and synchronization within the IPL and between IPL and pMTG increased when processing thematic relations.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Temporal Lobe/diagnostic imaging , Parietal Lobe , Judgment , Semantics
4.
Plant J ; 117(1): 107-120, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37753665

ABSTRACT

Black pepper (Piper nigrum L.), the world renown as the King of Spices, is not only a flavorsome spice but also a traditional herb. Piperine, a species-specific piper amide, is responsible for the major bioactivity and pungent flavor of black pepper. However, several key steps for the biosynthesis of piperoyl-CoA (acyl-donor) and piperidine (acyl-acceptor), two direct precursors for piperine, remain unknown. In this study, we used guilt-by-association analysis of the combined metabolome and transcriptome, to identify two feruloyldiketide-CoA synthases responsible for the production of the C5 side chain scaffold feruloyldiketide-CoA intermediate, which is considered the first and important step to branch metabolic fluxes from phenylpropanoid pathway to piperine biosynthesis. In addition, we also identified the first two key enzymes for piperidine biosynthesis derived from lysine in P. nigrum, namely a lysine decarboxylase and a copper amine oxidase. These enzymes catalyze the production of cadaverine and 1-piperideine, the precursors of piperidine. In vivo and in vitro experiments verified the catalytic capability of them. In conclusion, our findings revealed enigmatic key steps of piperine biosynthetic pathway and thus provide a powerful reference for dissecting the biosynthetic logic of other piper amides.


Subject(s)
Piper nigrum , Piper nigrum/genetics , Polyunsaturated Alkamides , Piperidines , Gene Expression Profiling , Metabolome
5.
J Integr Plant Biol ; 65(11): 2505-2518, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37675654

ABSTRACT

Specialized plant metabolism is a rich resource of compounds for drug discovery. The acylated flavonoid glycoside melitidin is being developed as an anti-cholesterol statin drug candidate, but its biosynthetic route in plants has not yet been fully characterized. Here, we describe the gene discovery and functional characterization of a new flavonoid gene cluster (UDP-glucuronosyltransferases (CgUGTs), 1,2 rhamnosyltransferase (Cg1,2RhaT), acyltransferases (CgATs)) that is responsible for melitidin biosynthesis in pummelo (Citrus grandis (L.) Osbeck). Population variation analysis indicated that the tailoring of acyltransferases, specific for bitter substrates, mainly determine the natural abundance of melitidin. Moreover, 3-hydroxy-3-methylglutaryl-CoA reductase enzyme inhibition assays showed that the product from this metabolic gene cluster, melitidin, may be an effective anti-cholesterol statin drug candidate. Co-expression of these clustered genes in Nicotiana benthamiana resulted in the formation of melitidin, demonstrating the potential for metabolic engineering of melitidin in a heterologous plant system. This study establishes a biosynthetic pathway for melitidin, which provides genetic resources for the breeding and genetic improvement of pummelo aimed at fortifying the content of biologically active metabolites.


Subject(s)
Citrus , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Biosynthetic Pathways/genetics , Plant Breeding , Flavonoids/metabolism , Citrus/genetics , Acyltransferases/metabolism
6.
Metabolites ; 13(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37367858

ABSTRACT

Zingiberaceae plants are widely used in the food and pharmaceutical industries; however, research on the chemical composition and interspecific differences in the metabolome and volatilome of Zingiberaceae plants is still limited. In this study, seven species of Zingiberaceae plants were selected, including Curcuma longa L., Zingiber officinale Rosc., Alpinia officinarum Hance, Alpinia tonkinensis Gagnep, Amomum tsaoko Crevost et Lemarie, Alpinia hainanensis K. Schum. and Amomum villosum Lour. Myristica fragrans Houtt. was also selected due to its flavor being similar to that of the Zingiberaceae plant. The metabolome and volatilome of selected plants were profiled by widely targeted approaches; 542 volatiles and 738 non-volatile metabolites were detected, and ß-myrcene, α-phellandrene and α-cadinene were detected in all the selected plants, while chamigren, thymol, perilla, acetocinnamone and cis-α-bisabolene were exclusively detected in certain Zingiberaceae plants. Differential analysis showed that some terpenoids, such as cadalene, cadalene-1,3,5-triene, cadalene-1,3,8-triene and (E)-ß-farnesene, and some lipids, including palmitic acid, linoleic acid and oleic acid were amongst the most varied compounds in Zingiberaceae plants. In conclusion, this study provided comprehensive metabolome and volatilome profiles for Zingiberaceae plants and revealed the metabolic differences between these plants. The results of this study could be used as a guide for the nutrition and flavor improvement of Zingiberaceae plants.

8.
Mol Plant ; 16(2): 322-336, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36540024

ABSTRACT

Grain essential amino acid (EAA) levels contribute to rice nutritional quality. However, the molecular mechanisms underlying EAA accumulation and natural variation in rice grains remain unclear. Here we report the identification of a previously unrecognized auxin influx carrier subfamily gene, OsAUX5, which encodes an amino acid transporter that functions in uptake of multiple amino acids. We identified an elite haplotype of Pro::OsAUX5Hap2 that enhances grain EAA accumulation without an apparent negative effect on agronomic traits. Natural variations of OsAUX5 occur in the cis elements of its promoter, which are differentially activated because of the different binding affinity between OsWRKY78 and the W-box, contributing to grain EAA variation among rice varieties. The two distinct haplotypes were shown to have originated from different Oryza rufipogon progenitors, which contributed to the divergence between japonica and indica. Introduction of the indica-type Pro::OsAUX5Hap2 genotype into japonica could significantly increase EAA levels, indicating that indica-type Pro::OsAUX5Hap2 can be utilized to increase grain EAAs of japonica varieties. Collectively, our study uncovers an WRKY78-OsAUX5-based regulatory mechanism controlling grain EAA accumulation and provides a potential target for breeding EAA-rich rice.


Subject(s)
Oryza , Oryza/genetics , Plant Breeding , Edible Grain/genetics , Genotype , Amino Acids, Essential/genetics , Amino Acids, Essential/metabolism
9.
Sci China Life Sci ; 66(5): 1108-1118, 2023 05.
Article in English | MEDLINE | ID: mdl-36462108

ABSTRACT

The sesquiterpene alpha-bisabolol is the predominant active ingredient in essential oils that are highly valued in the cosmetics industry due to its wound healing, anti-inflammatory, and skin-soothing properties. Alpha-bisabolol was thought to be restricted to Compositae plants. Here we reveal that alpha-bisabolol is also synthesized in rice, a non-Compositae plant, where it acts as a novel sesquiterpene phytoalexin. Overexpressing the gene responsible for the biosynthesis of alpha-bisabolol, OsTPS1, conferred bacterial blight resistance in rice. Phylogenomic analyses revealed that alpha-bisabolol-synthesizing enzymes in rice and Compositae evolved independently. Further experiments demonstrated that the natural variation in the disease resistance level was associated with differential transcription of OsTPS1 due to polymorphisms in its promoter. We demonstrated that OsTPS1 was regulated at the epigenetic level by JMJ705 through the methyl jasmonate pathway. These data reveal the cross-family accumulation and regulatory mechanisms of alpha-bisabolol production.


Subject(s)
Chrysanthemum , Oils, Volatile , Sesquiterpenes , Chrysanthemum/genetics , Chrysanthemum/metabolism , Disease Resistance/genetics , Epigenesis, Genetic , Sesquiterpenes/metabolism
11.
Materials (Basel) ; 15(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36233954

ABSTRACT

This paper presents the reverse priority impedance control of manipulators with reference to redundant robots of a given task. The reverse priority kinematic control of redundant manipulators is first expressed in detail. The motion in the joint space is derived following the opposite order compared with the classical task priority-based solution. Then the Cartesian impedance control is combined with the reverse priority impedance control to solve the reverse hierarchical impedance controlled, so that the Cartesian impedance behavior can be divided into the primary priority impedance control and the secondary priority impedance control. Furthermore, the secondary impedance control task will not disturb the primary impedance control task. The motion in the joint space is affected following the opposite order and working in the corresponding projection operators. The primary impedance control tasks are implemented at the end, so as to avoid the possible deformations caused by the singularities occurring in the secondary impedance control tasks. Hence, the proposed reverse priority impedance control of manipulator can achieve the desired impedance control tasks with proper hierarchy. In this paper, the simulation experiments of the manipulator will verify the proposed reverse priority control algorithm.

12.
Metabolites ; 12(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35629888

ABSTRACT

Rice (Oryza sativa L.) is one of the most globally important crops, nutritionally and economically. Therefore, analyzing the genetic basis of its nutritional quality is a paramount prerequisite for cultivating new varieties with increased nutritional health. To systematically compare the nutritional quality differences between landraces and cultivated rice, and to mine key genes that determine the specific nutritional traits of landraces, a seed metabolome database of 985 nutritional metabolites covering amino acids, flavonoids, anthocyanins, and vitamins by a widely targeted metabolomic approach with 114 rice varieties (35 landraces and 79 cultivars) was established. To further reveal the molecular mechanism of the metabolic differences in landrace and cultivated rice seeds, four cultivars and six landrace seeds were selected for transcriptome and metabolome analysis during germination, respectively. The integrated analysis compared the metabolic profiles and transcriptomes of different types of rice, identifying 358 differentially accumulated metabolites (DAMs) and 1982 differentially expressed genes (DEGs), establishing a metabolite-gene correlation network. A PCA revealed anthocyanins, flavonoids, and lipids as the central differential nutritional metabolites between landraces and cultivated rice. The metabolite-gene correlation network was used to screen out 20 candidate genes postulated to be involved in the structural modification of anthocyanins. Five glycosyltransferases were verified to catalyze the glycosylation of anthocyanins by in vitro enzyme activity experiments. At the same time, the different mechanisms of the anthocyanin synthesis pathway and structural diversity in landrace and cultivated rice were systematically analyzed, providing new insights for the improvement and utilization of the nutritional quality of rice landrace varieties.

13.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328636

ABSTRACT

Serotonin (5-hydroxytryptamine) plays an important role in many developmental processes and biotic/abiotic stress responses in plants. Although serotonin biosynthetic pathways in plants have been uncovered, knowledge of the mechanisms of serotonin accumulation is still limited, and no regulators have been identified to date. Here, we identified the basic leucine zipper transcription factor OsbZIP18 as a positive regulator of serotonin biosynthesis in rice. Overexpression of OsbZIP18 strongly induced the levels of serotonin and its early precursors (tryptophan and tryptamine), resulting in stunted growth and dark-brown phenotypes. A function analysis showed that OsbZIP18 activated serotonin biosynthesis genes (including tryptophan decarboxylase 1 (OsTDC1), tryptophan decarboxylase 3 (OsTDC3), and tryptamine 5-hydroxylase (OsT5H)) by directly binding to the ACE-containing or G-box cis-elements in their promoters. Furthermore, we demonstrated that OsbZIP18 is induced by UV-B stress, and experiments using UV-B radiation showed that transgenic plants overexpressing OsbZIP18 exhibited UV-B stress-sensitive phenotypes. Besides, exogenous serotonin significantly exacerbates UV-B stress of OsbZIP18_OE plants, suggesting that the excessive accumulation of serotonin may be responsible for the sensitivity of OsbZIP18_OE plants to UV-B stress. Overall, we identified a positive regulator of serotonin biosynthesis and demonstrated that UV-B-stress induced serotonin accumulation, partly in an OsbZIP18-dependent manner.


Subject(s)
Oryza , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Serotonin/metabolism
14.
Sci China Life Sci ; 65(9): 1794-1810, 2022 09.
Article in English | MEDLINE | ID: mdl-35287184

ABSTRACT

Various aspects of the organisms adapt to cyclically changing environmental conditions via transcriptional regulation. However, the role of rhythmicity in altering the global aspects of metabolism is poorly characterized. Here, we subjected four rice (Oryza sativa) varieties to a range of metabolic profiles and RNA-seq to investigate the temporal relationships of rhythm between transcription and metabolism. More than 40% of the rhythmic genes and a quarter of metabolites conservatively oscillated across four rice accessions. Compared with the metabolome, the transcriptome was more strongly regulated by rhythm; however, the rhythm of metabolites had an obvious opposite trend between day and night. Through association analysis, the time delay of rhythmic transmission from the transcript to the metabolite level was ∼4 h under long-day conditions, although the transmission was nearly synchronous for carbohydrate and nucleotide metabolism. The rhythmic accumulation of metabolites maintained highly coordinated temporal relationships in the metabolic network, whereas the correlation of some rhythmic metabolites, such as branched-chain amino acids (BCAAs), was significantly different intervariety. We further demonstrated that the cumulative diversity of BCAAs was due to the differential expression of branched-chain aminotransferase 2 at dawn. Our research reveals the flexible pattern of rice metabolic rhythm existing with conservation and diversity.


Subject(s)
Oryza , Gene Expression Regulation, Plant , Metabolome/genetics , Oryza/genetics , Oryza/metabolism , Transcriptome
15.
Foods ; 11(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35206028

ABSTRACT

More than 2 billion people worldwide are under threat of nutritional deficiency. Thus, an in-depth comprehension of the nutritional composition of staple crops and popular fruits is essential for health. Herein, we performed LC-MS-based non-targeted and targeted metabolome analyses with crops (including wheat, rice, and corn) and fruits (including grape, banana, and mango). We detected a total of 2631 compounds by using non-targeted strategy and identified more than 260 nutrients. Our work discovered species-dependent accumulation of common present nutrients in crops and fruits. Although rice and wheat lack vitamins and amino acids, sweet corn was rich in most amino acids and vitamins. Among the three fruits, mango had more vitamins and amino acids than grape and banana. Grape and banana provided sufficient 5-methyltetrahydrofolate and vitamin B6, respectively. Moreover, rice and grape had a high content of flavonoids. In addition, the three crops contained more lipids than fruits. Furthermore, we also identified species-specific metabolites. The crops yielded 11 specific metabolites, including flavonoids, lipids, and others. Meanwhile, most fruit-specific nutrients were flavonoids. Our work discovered the complementary pattern of essential nutrients in crops and fruits, which provides metabolomic evidence for a healthy diet.

16.
Sci China Life Sci ; 65(7): 1380-1394, 2022 07.
Article in English | MEDLINE | ID: mdl-35079956

ABSTRACT

Plants produce specialized metabolites to adapt to the ever-changing environments. Flavonoids are antioxidants essential for growth, development, and breeding with increased stress resistance in crops. However, the mechanism of the involvement of flavonoids in ultraviolet-B (UV-B) stress in rice (Oryza sativa) is largely unknown. In this study, we cloned and functionally identified a receptor-like kinase (OsRLCK160) and a bZIP transcription factor (OsbZIP48) positively regulating flavonoid accumulation through metabolite-based genome-wide association study of the flavonoid content in rice. Meanwhile, OsRLCK160 interacted with and phosphorylated OsbZIP48 to regulate the flavonoid accumulation and participate in UV-B tolerance in rice. Our study indicates the importance of applying OsRLCK160 and OsbZIP48 to advance the fundamental understanding of stable rice production and breed UV-B-tolerant rice varieties, which may contribute to breeding high-yield rice varieties.


Subject(s)
Oryza , Flavonoids/metabolism , Genome-Wide Association Study , Plant Breeding
17.
Mol Plant ; 15(1): 189-202, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34509640

ABSTRACT

Volatile organic compounds play essential roles in plant environment interactions as well as determining the fragrance of plants. Although gas chromatography-mass spectrometry-based untargeted metabolomics is commonly used to assess plant volatiles, it suffers from high spectral convolution, low detection sensitivity, a limited number of annotated metabolites, and relatively poor reproducibility. Here, we report a widely targeted volatilomics (WTV) method that involves using a "targeted spectra extraction" algorithm to address spectral convolution, constructing a high-coverage MS2 spectral tag library to expand volatile annotation, adapting a multiple reaction monitoring mode to improve sensitivity, and using regression models to adjust for signal drift. The newly developed method was used to profile the volatilome of rice grains. Compared with the untargeted method, the newly developed WTV method shows higher sensitivity (for example, the signal-to-noise ratio of guaicol increased from 4.1 to 18.8), high annotation coverage (the number of annotated volatiles increased from 43 to 132), and better reproducibility (the number of volatiles in quality control samples with relative standard deviation value below 30.0% increased from 14 to 92 after normalization). Using the WTV method, we studied the metabolic responses of tomato to environmental stimuli and profiled the volatilomes of different rice accessions. The results identified benzothiazole as a potential airborne signal priming tomato plants for enhanced defense and 2-nonanone and 2-heptanone as novel aromatic compounds contributing to rice fragrance. These case studies suggest that the widely targeted volatilomics method is more efficient than those currently used and may considerably promote plant volatilomics studies.


Subject(s)
Crops, Agricultural/metabolism , Fruit/metabolism , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Plant Leaves/metabolism , Seeds/metabolism , Volatile Organic Compounds/metabolism , Reproducibility of Results
18.
Mol Plant ; 15(2): 258-275, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34715392

ABSTRACT

As one of the most important crops in the world, rice (Oryza sativa) is a model plant for metabolome research. Although many studies have focused on the analysis of specific tissues, the changes in metabolite abundance across the entire life cycle have not yet been determined. In this study, combining both targeted and nontargeted metabolite profiling methods, a total of 825 annotated metabolites were quantified in rice samples from different tissues covering the entire life cycle. The contents of metabolites in different tissues of rice were significantly different, with various metabolites accumulating in the plumule and radicle during seed germination. Combining these data with transcriptome data obtained from the same time period, we constructed the Rice Metabolic Regulation Network. The metabolites and co-expressed genes were further divided into 12 clusters according to their accumulation patterns, with members within each cluster displaying a uniform and clear pattern of abundance across development. Using this dataset, we established a comprehensive metabolic profile of the rice life cycle and used two independent strategies to identify novel transcription factors-namely the use of known regulatory genes as bait to screen for new networks underlying lignin metabolism and the unbiased identification of new glycerophospholipid metabolism regulators on the basis of tissue specificity. This study thus demonstrates how guilt-by-association analysis of metabolome and transcriptome data spanning the entire life cycle in cereal crops provides novel resources and tools to aid in understanding the mechanisms underlying important agronomic traits.


Subject(s)
Oryza , Animals , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Life Cycle Stages , Metabolome/genetics , Oryza/metabolism , Transcriptome/genetics
19.
Genome Biol ; 22(1): 304, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34736486

ABSTRACT

BACKGROUND: Coconut is an important tropical oil and fruit crop whose evolutionary position renders it a fantastic species for the investigation of the evolution of monocot chromosomes and the subsequent differentiation of ancient plants. RESULTS: Here, we report the assembly and annotation of reference-grade genomes of Cn. tall and Cn. dwarf, whose genome sizes are 2.40 Gb and 2.39 Gb, respectively. The comparative analysis reveals that the two coconut subspecies diverge about 2-8 Mya while the conserved Arecaceae-specific whole-genome duplication (ω WGD) occurs approximately 47-53 Mya. It additionally allows us to reconstruct the ancestral karyotypes of the ten ancient monocot chromosomes and the evolutionary trajectories of the 16 modern coconut chromosomes. Fiber synthesis genes in Cn. tall, related to lignin and cellulose synthesis, are found at a higher copy number and expression level than dwarf coconuts. Integrated multi-omics analysis reveals that the difference in coconut plant height is the result of altered gibberellin metabolism, with both the GA20ox copy number and a single-nucleotide change in the promoter together leading to the difference in plant height between Cn. tall and Cn. dwarf. CONCLUSION: We provide high-quality coconut genomes and reveal the genetic basis of trait differences between two coconuts through multi-omics analysis. We also reveal that the selection of plant height has been targeted for the same gene for millions of years, not only in natural selection of ancient plant as illustrated in coconut, but also for artificial selection in cultivated crops such as rice and maize.


Subject(s)
Chromosomes, Plant , Cocos/genetics , Evolution, Molecular , Genome, Plant , Biosynthetic Pathways , Cocos/anatomy & histology , Cocos/metabolism , Genomics , Karyotype
20.
Metabolites ; 11(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809004

ABSTRACT

Fruits provide humans with multiple kinds of nutrients and protect humans against worldwide nutritional deficiency. Therefore, it is essential to understand the nutrient composition of various fruits in depth. In this study, we performed LC-MS-based non-targeted metabolomic analyses with ten kinds of fruit, including passion fruit, mango, starfruit, mangosteen, guava, mandarin orange, grape, apple, blueberry, and strawberry. In total, we detected over 2500 compounds and identified more than 300 nutrients. Although the ten fruits shared 909 common-detected compounds, each species accumulated a variety of species-specific metabolites. Additionally, metabolic profiling analyses revealed a constant variation in each metabolite's content across the ten fruits. Moreover, we constructed a neighbor-joining tree using metabolomic data, which resembles the single-copy protein-based phylogenetic tree. This indicates that metabolome data could reflect the genetic relationship between different species. In conclusion, our work enriches knowledge on the metabolomics of fruits, and provides metabolic evidence for the genetic relationships among these fruits.

SELECTION OF CITATIONS
SEARCH DETAIL
...