Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Eur J Med Res ; 29(1): 403, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095909

ABSTRACT

PURPOSE: This current study attempted to investigate whether one-stitch method (OM) of temporary ileostomy influenced the stoma-related complications after laparoscopic low anterior resection (LLAR). METHODS: We searched for eligible studies in four databases including PubMed, Embase, Cochrane Library, and CNKI from inception to July 20, 2023. Both surgical outcomes and stoma-related complications were compared between the OM group and the traditional method (TM) group. The Newcastle-Ottawa Scale (NOS) was adopted for quality assessment. RevMan 5.4 was conducted for data analyzing. RESULTS: Totally 590 patients from six studies were enrolled in this study (272 patients in the OM group and 318 patients in the TM group). No significant difference was found in baseline information (P > 0.05). Patients in the OM group had shorter operative time in both the primary LLAR surgery (MD = - 17.73, 95%CI = - 25.65 to - 9.80, P < 0.01) and the stoma reversal surgery (MD = - 18.70, 95%CI = - 22.48 to -14.92, P < 0.01) than patients in the TM group. There was no significant difference in intraoperative blood loss of the primary LLAR surgery (MD = - 2.92, 95%CI = - 7.15 to 1.32, P = 0.18). Moreover, patients in the OM group had fewer stoma-related complications than patients in the TM group (OR = 0.55, 95%CI = 0.38 to 0.79, P < 0.01). CONCLUSION: The OM group had shorter operation time in both the primary LLAR surgery and the stoma reversal surgery than the TM group. Moreover, the OM group had less stoma-related complications.


Subject(s)
Ileostomy , Laparoscopy , Postoperative Complications , Rectal Neoplasms , Humans , Ileostomy/adverse effects , Ileostomy/methods , Laparoscopy/adverse effects , Laparoscopy/methods , Rectal Neoplasms/surgery , Postoperative Complications/etiology , Surgical Stomas/adverse effects , Operative Time , Female , Male
2.
Front Pharmacol ; 15: 1444733, 2024.
Article in English | MEDLINE | ID: mdl-39170704

ABSTRACT

Background and Objective: Chronic atrophic gastritis (CAG) is a complex chronic disease caused by multiple factors that frequently occurs disease in the clinic. The worldwide prevalence of CAG is high. Interestingly, clinical CAG patients often present with a variety of symptom phenotypes, which makes it more difficult for clinicians to treat. Therefore, there is an urgent need to improve our understanding of the complexity of the clinical CAG population, obtain more accurate disease subtypes, and explore the relationship between clinical symptoms and medication. Therefore, based on the integrated platform of complex networks and clinical research, we classified the collected patients with CAG according to their different clinical characteristics and conducted correlation analysis on the classification results to identify more accurate disease subtypes to aid in personalized clinical treatment. Method: Traditional Chinese medicine (TCM) offers an empirical understanding of the clinical subtypes of complicated disorders since TCM therapy is tailored to the patient's symptom profile. We gathered 6,253 TCM clinical electronic medical records (EMRs) from CAG patients and manually annotated, extracted, and preprocessed the data. A shared symptom-patient similarity network (PSN) was created. CAG patient subgroups were established, and their clinical features were determined through enrichment analysis employing community identification methods. Different clinical features of relevant subgroups were correlated based on effectiveness to identify symptom-botanical botanical drugs correspondence. Moreover, network pharmacology was employed to identify possible biological relationships between screened symptoms and medications and to identify various clinical and molecular aspects of the key subtypes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results: 5,132 patients were included in the study: 2,699 males (52.60%) and 2,433 females (47.41%). The population was divided into 176 modules. We selected the first 3 modules (M29, M3, and M0) to illustrate the characteristic phenotypes and genotypes of CAG disease subtypes. The M29 subgroup was characterized by gastric fullness disease and internal syndrome of turbidity and poison. The M3 subgroup was characterized by epigastric pain and disharmony between the liver and stomach. The M0 subgroup was characterized by epigastric pain and dampness-heat syndrome. In symptom analysis, The top symptoms for symptom improvement in all three subgroups were stomach pain, bloating, insomnia, poor appetite, and heartburn. However, the three groups were different. The M29 subgroup was more likely to have stomach distention, anorexia, and palpitations. Citrus medica, Solanum nigrum, Jiangcan, Shan ci mushrooms, and Dillon were the most popular botanical drugs. The M3 subgroup has a higher incidence of yellow urine, a bitter tongue, and stomachaches. Smilax glabra, Cyperus rotundus, Angelica sinensis, Conioselinum anthriscoides, and Paeonia lactiflora were the botanical drugs used. Vomiting, nausea, stomach pain, and appetite loss are common in the M0 subgroup. The primary medications are Scutellaria baicalensis, Smilax glabra, Picrorhiza kurroa, Lilium lancifolium, and Artemisia scoparia. Through GO and KEGG pathway analysis, We found that in the M29 subgroup, Citrus medica, Solanum nigrum, Jiangcan, Shan ci mushrooms, and Dillon may exert their therapeutic effects on the symptoms of gastric distension, anorexia, and palpitations by modulating apoptosis and NF-κB signaling pathways. In the M3 subgroup, Smilax glabra, Cyperus rotundus, Angelica sinensis, Conioselinum anthriscoides, and Paeonia lactiflora may be treated by NF-κB and JAK-STAT signaling pathway for the treatment of stomach pain, bitter mouth, and yellow urine. In the M0 subgroup, Scutellaria baicalensis, Smilax glabra, Picrorhiza kurroa, Lilium lancifolium, and Artemisia scoparia may exert their therapeutic effects on poor appetite, stomach pain, vomiting, and nausea through the PI3K-Akt signaling pathway. Conclusion: Based on PSN identification and community detection analysis, CAG population division can provide useful recommendations for clinical CAG treatment. This method is useful for CAG illness classification and genotyping investigations and can be used for other complicated chronic diseases.

3.
Nat Aging ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987646

ABSTRACT

Emerging evidence suggests that neurological and other post-acute sequelae of COVID-19 can persist beyond or develop following SARS-CoV-2 infection. However, the long-term trajectories of cognitive change after a COVID-19 infection remain unclear. Here we investigated cognitive changes over a period of 2.5 years among 1,245 individuals aged 60 years or older who survived infection with the original SARS-CoV-2 strain in Wuhan, China, and 358 uninfected spouses. We show that the overall incidence of cognitive impairment among older COVID-19 survivors was 19.1% at 2.5 years after infection and hospitalization, evaluated using the Telephone Interview for Cognitive Status-40. Cognitive decline primarily manifested in individuals with severe COVID-19 during the initial year of infection, after which the rate of decline decelerated. Severe COVID-19, cognitive impairment at 6 months and hypertension were associated with long-term cognitive decline. These findings reveal the long-term cognitive trajectory of the disease and underscore the importance of post-infection cognitive care for COVID-19 survivors.

4.
Article in English | MEDLINE | ID: mdl-39031344

ABSTRACT

Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer, accounting for approximately 90% of liver cancer cases. It currently ranks as the fifth most prevalent cancer worldwide and represents the third leading cause of cancer-related mortality. As a malignant disease with surgical resection and ablative therapy being the sole curative options available, it is disheartening that most HCC patients who undergo liver resection experience relapse within five years. Microvascular invasion (MVI), defined as the presence of micrometastatic HCC emboli within liver vessels, serves as an important histopathological feature and indicative factor for both disease-free survival and overall survival in HCC patients. Therefore, achieving accurate preoperative noninvasive prediction of MVI holds vital significance in selecting appropriate clinical treatments and improving patient prognosis. Currently, there are no universally recognized criteria for preoperative diagnosis of MVI in clinical practice. Consequently, extensive research efforts have been directed towards preoperative imaging prediction of MVI to address this problem and the relative research progresses were reviewed in this article to summarize its current limitations and future research prospects.

5.
BMC Med Educ ; 24(1): 753, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997704

ABSTRACT

BACKGROUND: In the post-pandemic era of higher education, hybrid teaching has emerged as a prevalent approach and is anticipated to persist as a defining trend in the future teaching reforms worldwide. However, despite its widespread adoption, certain limitations have become apparent. The objective of this study is to identify the genuine factors that impact students' performance, explore strategies that teachers can employ to enhance their teaching effectiveness and enhance students' academic self-efficacy. METHODS: The study was performed among undergraduate medical students enrolled in Physiology course at Harbin Medical University in 2020 and 2022. Since 2020, influenced by the COVID-19 pandemic, a hybrid teaching method based on an established offline teaching model called BOPPPS was implemented. A questionnaire was performed in both 2020 and 2022 to evaluate students' satisfaction and efficiency of our hybrid teaching. A comparison was also carried out on the final examination scores of students majoring in Pharmacy and Clinical Pharmacy across the years 2020 to 2022. RESULTS: The final examination scores of students in 2022 were significantly lower than those in 2020 and 2021 both in Pharmacy and Clinical Pharmacy majors. There was also a decrease of the score in students of Clinical Pharmacy in 2021 compared to 2020. The questionnaire indicated that over half (52.0%) of the students in 2022 preferred offline teaching method, in contrast to 39.1% in 2020. There were obvious changes in students from 2020 to 2022 about the disadvantages of hybrid teaching, the improvement of students' learning ability and the duration of students' autonomous learning. Through cross statistical analysis, online learning styles, learning ability improvement and students' learning burden have been identified as the primary factors influencing their preference for future teaching method. CONCLUSIONS: Hybrid teaching is still a necessary trend in the future teaching reform base on its multiple advantages. However, in order to improve the teaching outcomes and foster students' participation and learning initiatives, it is imperative to undertake additional reforms in the future teaching process.


Subject(s)
COVID-19 , Education, Medical, Undergraduate , Educational Measurement , Students, Medical , Humans , COVID-19/epidemiology , Education, Medical, Undergraduate/methods , Students, Medical/psychology , Teaching , Pandemics , SARS-CoV-2 , Education, Distance/methods , Surveys and Questionnaires , Education, Pharmacy/methods , China , Male
6.
Zhen Ci Yan Jiu ; 49(6): 661-666, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-38897811

ABSTRACT

The STRICTA checklist is the guideline for reporting clinical trials undertaken using acupuncture intervention. As an extension of the CONSORT checklist, the STRICTA checklist facilitates the reporting quality of acupuncture clinical trials. The clinical research paradigm changes along with the development of science and technology. It is crucial to ensure whether or not the existing STRICTA checklist guides the reporting clinical trials of acupuncture now and in the future as well. This paper introduces the development and the updating procedure of the STRICTA checklist, analyzes the characteristics of utility and the limitation, and proposes several suggestions on the difficulties and challenges encountered in the implementation of the STRICTA checklist of current version so as to advance the further update and improvement.


Subject(s)
Acupuncture Therapy , Checklist , Humans , Acupuncture Therapy/standards , Clinical Trials as Topic/standards , Research Design/standards
7.
World J Emerg Med ; 15(3): 206-213, 2024.
Article in English | MEDLINE | ID: mdl-38855370

ABSTRACT

BACKGROUND: This study aims to explore whether Xuebijing (XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism. METHODS: A rat model of sepsis was established by cecal ligation and puncture (CLP). A total of 30 male SD rats were divided into four groups: sham group, CLP group, XBJ + axitinib group, and XBJ group. XBJ was intraperitoneally injected 2 h before CLP. Hemodynamic data (blood pressure and heart rate) were recorded. The intestinal microcirculation data of the rats were analyzed via microcirculation imaging. Enzyme-linked immunosorbent assay (ELISA) kits were used to detect the serum levels of interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) in the rats. Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats. The expression of vascular endothelial growth factor A (VEGF-A), phosphoinositide 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), protein kinase B (Akt), and phosphorylated Akt (p-Akt) in the small intestine was analyzed via Western blotting. RESULTS: XBJ improved intestinal microcirculation dysfunction in septic rats, alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa, and reduced the systemic inflammatory response. Moreover, XBJ upregulated the expression of VEGF-A, p-PI3K/total PI3K, and p-Akt/total Akt in the rat small intestine. CONCLUSION: XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.

8.
Mar Drugs ; 22(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38921547

ABSTRACT

Clavatols exhibit a wide range of biological activities due to their diverse structures. A genome mining strategy identified an A5cla cluster from Penicillium sp. MYA5, derived from the Arctic plant Dryas octopetala, is responsible for clavatol biosynthesis. Seven clavatols, including one new clavatol derivate named penicophenone F (1) and six known clavatols (2-7), were isolated from Penicillium sp. MYA5 using a transcriptome mining strategy. These structures were elucidated by comprehensive spectroscopic analysis. Antibacterial, aldose reductase inhibition, and siderophore-producing ability assays were conducted on compounds 1-7. Compounds 1 and 2 demonstrated inhibitory effects on the ALR2 enzyme with inhibition rates of 75.3% and 71.6% at a concentration of 10 µM, respectively. Compound 6 exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 4.0 µg/mL and 4.0 µg/mL, respectively. Additionally, compounds 1, 5, and 6 also showed potential iron-binding ability.


Subject(s)
Anti-Bacterial Agents , Penicillium , Staphylococcus aureus , Penicillium/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Genomics/methods , Escherichia coli/drug effects , Escherichia coli/genetics , Microbial Sensitivity Tests , Transcriptome , Arctic Regions , Siderophores/pharmacology , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/genetics
9.
Nat Commun ; 15(1): 5332, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909052

ABSTRACT

Veratramine and cyclopamine, two of the most representative members of the isosteroidal alkaloids, are valuable molecules in agricultural and medicinal chemistry. While plant extraction of these compounds suffers from uncertain supply, efficient chemical synthesis approaches are in high demand. Here, we present concise, divergent, and scalable syntheses of veratramine and cyclopamine with 11% and 6.2% overall yield, respectively, from inexpensive dehydro-epi-androsterone. Our synthesis readily provides gram quantities of both target natural products by utilizing a biomimetic rearrangement to form the C-nor-D-homo steroid core and a stereoselective reductive coupling/(bis-)cyclization sequence to establish the (E)/F-ring moiety.


Subject(s)
Veratrum Alkaloids , Veratrum Alkaloids/chemical synthesis , Veratrum Alkaloids/chemistry , Stereoisomerism , Cyclization , Biological Products/chemical synthesis , Biological Products/chemistry , Molecular Structure
10.
Appl Opt ; 63(12): 3130-3137, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856457

ABSTRACT

Numerous applications at the photon-starved regime require a free-space coupling single-photon detector with a large active area, low dark count rate (DCR), and superior time resolutions. Here, we developed a superconducting microstrip single-photon detector (SMSPD), with a large active area of 260 µm in diameter, a DCR of ∼5k c p s, and a low time jitter of ∼171p s, operated at a near-infrared of 1550 nm and a temperature of ∼2.0K. As a demonstration, we applied the detector to a single-pixel galvanometer scanning system and successfully reconstructed the object information in depth and intensity using a time-correlated photon counting technology.

11.
ACS Nano ; 18(24): 15661-15670, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38841753

ABSTRACT

Methanogenic archaea, characterized by their cell membrane lipid molecules consisting of isoprenoid chains linked to glycerol-1-phosphate via ether bonds, exhibit exceptional adaptability to extreme environments. However, this distinct lipid architecture also complicates the interactions between methanogenic archaea and nanoparticles. This study addresses this challenge by exploring the interaction and transformation of selenium nanoparticles (SeNPs) within archaeal Methanosarcina acetivorans C2A. We demonstrated that the effects of SeNPs are highly concentration-dependent, with chemical stimulation of cellular processes at lower SeNPs concentrations as well as oxidative stress and metabolic disruption at higher concentrations. Notably, we observed the formation of a protein corona on SeNPs, characterized by the selective adsorption of enzymes critical for methylotrophic methanogenesis and those involved in selenium methylation, suggesting potential alterations in protein function and metabolic pathways. Furthermore, the intracellular transformation of SeNPs into both inorganic and organic selenium species highlighted their bioavailability and dynamic transformation within archaea. These findings provide vital insights into the nano-bio interface in archaeal systems, contributing to our understanding of archaeal catalysis and its broader applications.


Subject(s)
Methanosarcina , Nanoparticles , Selenium , Selenium/chemistry , Selenium/metabolism , Methanosarcina/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Oxidative Stress
12.
Anal Chem ; 96(22): 8981-8989, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38758609

ABSTRACT

Addressing the challenge of understanding how cellular interfaces dictate the mechanical resilience and adhesion of archaeal cells, this study demonstrates the role of the surface layer (S-layer) in methanogenic archaea. Using a combination of atomic force microscopy and single-cell force spectroscopy, we quantified the impact of S-layer disruption on cell morphology, mechanical properties, and adhesion capabilities. We demonstrate that the S-layer is crucial for maintaining cell morphology, where its removal induces significant cellular enlargement and deformation. Mechanical stability of the cell surface is substantially compromised upon S-layer disruption, as evidenced by decreased Young's modulus values. Adhesion experiments revealed that the S-layer primarily facilitates hydrophobic interactions, which are significantly reduced after its removal, affecting both cell-cell and cell-bubble interactions. Our findings illuminate the S-layer's fundamental role in methanogen architecture and provide a chemical understanding of archaeal cell surfaces, with implications for enhancing methane production in biotechnological applications.


Subject(s)
Microscopy, Atomic Force , Single-Cell Analysis , Surface Properties , Archaea/chemistry , Archaea/metabolism , Cell Adhesion , Hydrophobic and Hydrophilic Interactions
14.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1888-1895, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812201

ABSTRACT

This study observed the effects of Notoginseng Radix et Rhizoma on the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin complex 1(mTORC1) signaling pathway and mitochondrial energy metabolism in the rat model of adriamycin-induced renal fibrosis with blood stasis syndrome to explore the mechanism of Notoginseng Radix et Rhizoma in protecting the kidney. Thirty male rats with adriamycin-induced renal fibrosis were randomized into model, low-, medium-, and high-dose Notoginseng Radix et Rhizoma, and positive control groups(n=6). Six clean SD male rats were selected into the normal group. The normal group and model group were administrated with normal saline, and other groups with corresponding drugs. After 8 weeks of treatment, the renal function, renal pathology, adenosine triphosphate(ATP) levels, Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase activities, and the protein levels of ATP5B, mTORC1, 70 kDa ribosomal protein S6 kinase(P70S6K), P85, Akt, p-Akt, and SH2-containing inositol phosphatase(SHIP2) in the renal tissue were determined. Compared with the normal group, the model group showed elevated levels of blood urea nitrogen(BUN) and serum creatinine(SCr)(P<0.01). Compared with the model group, Notoginseng Radix et Rhizoma and the positive control lowered the levels of BUN and SCr, which were significant in the medium-and high-dose Noto-ginseng Radix et Rhizoma groups and the positive control group(P<0.05). Compared with the model group, Notoginseng Radix et Rhizoma and the positive control alleviated the pathological changes in the renal tissue, such as vacuolar and fibroid changes, glomerulus atrophy, cystic expansion of renal tubules, and massive infiltration of inflammatory cells. Compared with the normal group, the model group showed decreased mitochondrial ATP content and Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase activities in the renal tissue(P<0.05), and medium-and high-dose Notoginseng Radix et Rhizoma and positive control mitigated such decreases(P<0.05). Compared with the model group, medium-and high-dose Notoginseng Radix et Rhizoma and the positive control up-regulated the protein levels of ATP5B and SHIP2 and down-regulated the protein levels of mTORC1, P70S6K, P85, Akt, and p-Akt(P<0.05 or P<0.01 or P<0.001). Notoginseng Radix et Rhizoma may exert an anti-fibrosis effect by inhibiting the activation of the PI3K/Akt/mTORC1 pathway to restore mitochondrial energy metabolism, thus protecting the kidney.


Subject(s)
Drugs, Chinese Herbal , Energy Metabolism , Mechanistic Target of Rapamycin Complex 1 , Mitochondria , Panax notoginseng , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Male , Rats , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Panax notoginseng/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Energy Metabolism/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Rhizome/chemistry , Humans , Signal Transduction/drug effects , Kidney/drug effects , Kidney/metabolism , Renal Insufficiency/drug therapy , Renal Insufficiency/metabolism
15.
Chem Biodivers ; 21(8): e202401097, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38760978

ABSTRACT

Two uncommon epoxyquinols, pyrrolocytosporin A (1) and cytosporin E2 (2), along with the known cytosporin Y1 (3), were isolated from the solid defined medium of the Arctic-derived fungus Eutypella sp. D-1. Their structures were established through comprehensive analyses of spectroscopic and electronic circular dichroism data. Structurally, compound 1 represented the first nitrogen-containing epoxyquinol characterized by a pyrrole fused cytosporin framework, while compound 2 contained an uncommon cyclic carbonate functionality. The antibacterial, immunosuppressive, anti-inflammatory, and cytotoxic activities of all compounds were evaluated. Among the three metabolites, only compound 1 exhibited inhibitory effects on nitric oxide production induced by lipopolysaccharide with an IC50 value of 6.55 µM. Additionally, only compound 2 displayed inhibitory activity against ConA-induced T-cell proliferation with an IC50 value of 9.85 µM.


Subject(s)
Cell Proliferation , Lipopolysaccharides , Nitric Oxide , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Cell Proliferation/drug effects , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Animals , Mice , T-Lymphocytes/drug effects , Microbial Sensitivity Tests , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/isolation & purification , Molecular Structure , Molecular Conformation , RAW 264.7 Cells , Dose-Response Relationship, Drug
17.
Article in English | MEDLINE | ID: mdl-38710643

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disorder affecting up to 20% of children in developed countries. Although probiotics have shown promise as adjuvant treatments for AD, their mechanisms are not well understood. OBJECTIVE: Building upon our previous studies, we investigated whether Lactobacillus gasseri and its moonlighting glyceraldehyde 3-phosphate dehydrogenase (GAPDH), namely LGp40, could be beneficial in AD management. METHODS: In AD mouse models (SKH and C57BL/6J mice) with ovalbumin (OVA) and Dermatophagoides pteronyssinus (Der p) allergens, aligning with the "outside-in" and "inside-out" hypotheses, we administered L. gasseri orally and LGp40 intraperitoneally to investigate their protective effects. The evaluation involved measuring physiological, pathological, and immune function parameters. To delve deeper into the detailed mechanism of LGp40 protection in AD, additional assays were conducted using human skin keratinocytes (HaCaT) and monocytes (THP1) cell lines. RESULTS: L. gasseri and LGp40 enhanced skin barrier function and increased skin moisture retention. They also led to reduced infiltration of Langerhans cells in the dermis and mitigated skewed Th2 and Th17 immune responses. Moreover, LGp40 inhibited allergen-induced keratinocyte apoptosis through the blockade of the caspase-3 cascade and reduced the NLR family pyrin domain containing 3 (NLRP3) inflammasome in macrophages. These inhibitions were achieved through the activation of the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. CONCLUSION: The results of this study provide a novel insight into the mechanism of action of probiotics in the prevention and treatment for allergic disorders through the moonlighting GAPDH protein.

19.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38659192

ABSTRACT

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Subject(s)
Microcystis , Nitrogen , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Nitrogen/chemistry , Nitrogen/metabolism , Microcystins/metabolism , Polystyrenes/chemistry , Particle Size , Microplastics/metabolism , Nanoparticles/chemistry , Nitrates/metabolism , Nitrates/chemistry , Urea/metabolism , Urea/chemistry , Urea/pharmacology
20.
Parasitol Res ; 123(4): 197, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668762

ABSTRACT

The majority of ixodid ticks display host-specificity to varying extents. Feeding on different hosts affects their development and reproduction. Consequences can be analyzed at the level of the egg, as it is the initial stage of tick development. Tick egg proteins are abundant and diverse, providing nutrients for embryonic development. However, studies on tick egg profiles are scarce. In this study, we aimed to analyze whether feeding Haemaphysalis qinghaiensis ticks on the yaks (Bos grunniens) and domestic sheep (Ovis aries) has an impact on the variety and variability of the egg proteome. Detached engorged females were used to lay eggs, which were then collected, dewaxed, and subjected to protein extraction. The extracted egg proteins were enzymatically digested using Filter-Aided Sample Preparation (FASP), and the unique peptides were separated and detected by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS). The MS data were searched against the previously constructed whole tick transcriptome library of H. qinghaiensis, and the UniProt database for the identification of tick-derived egg proteins. The analysis revealed 49 and 53 high-confidence proteins identified in eggs collected from B. grunniens (EggBg) and O. aries (EggOa), respectively. Of these, 46 high-confidence proteins were common to both egg types, while three were unique to EggBg and seven to EggOa. All the identified proteins mainly belonged to enzymes, enzyme inhibitors, transporters, and proteins with unknown functions. The differential abundance analysis showed that nine proteins were significantly more present in EggBg, while six were significantly more present in EggOa. Overall, enzymes were the most diverse group, while vitellogenin (Vg) was the most abundant. Blood meal uptake on different hosts has a certain effect on the egg proteome composition and the abundance of some proteins, but it may also lead to compensation of protein roles.


Subject(s)
Egg Proteins , Ixodidae , Animals , Ixodidae/physiology , Ixodidae/metabolism , Ixodidae/growth & development , Female , Egg Proteins/metabolism , Cattle , Sheep , Proteome , Ovum/chemistry , Tandem Mass Spectrometry , Chromatography, Liquid , Tick Infestations/veterinary , Tick Infestations/parasitology , Feeding Behavior
SELECTION OF CITATIONS
SEARCH DETAIL