Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.558
Filter
2.
J Colloid Interface Sci ; 672: 287-298, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38843681

ABSTRACT

Compared with lithium-ion batteries (LIBs), lithium-sulfur batteries (LSBs), based on electrochemical reactions involving multi-step 16-electron transformations provide higher specific capacity (1672 mAh g-1) and specific energy (2600 Wh kg-1), exhibiting great potential in the field of energy storage. However, the inherent insulation of sulfur, slow electrochemical reaction kinetics and detrimental shuttle-effect of lithium polysulfides (LiPSs) restrict the development of LSBs in practical applications. Herein, the iodine-doped carbon nanotubes (I-CNTs) is firstly reported as sulfur host material to the enhance the adsorption-conversion kinetics of LSBs. Iodine doping can significantly improve the polarity of I-CNTs. Iodine atoms with lone pair electrons (Lewis base) in iodine-doped CNTs can interact with lithium cations (Lewis acidic) in LiPSs, thereby anchoring polysulfides and suppressing subsequent shuttling behavior. Moreover, the charge transfer between iodine species (electron acceptor) and CNTs (electron donor) decreases the gap band and subsequently improves the conductivity of I-CNTs. The enhanced adsorption effect and conductivity are beneficial for accelerating reaction kinetics and enhancing electrocatalytic activity. The in-situ Raman spectroscopy, quasi in-situ electrochemical impedance spectroscopy (EIS) and Li2S potentiostatic deposition current-time (i-t) curves were conducted to verify mechanism of complex sulfur reduction reaction (SRR). Owing to above advantages, the I-CNTs@S composite cathode exhibits an ultrahigh initial capacity of 1326 mAh g-1 as well as outstanding cyclicability and rate performance. Our research results provide inspirations for the design of multifunctional host material for sulfur/carbon composite cathodes in LSBs.

4.
Biomed Eng Online ; 23(1): 52, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851691

ABSTRACT

Accurate segmentation of multiple organs in the head, neck, chest, and abdomen from medical images is an essential step in computer-aided diagnosis, surgical navigation, and radiation therapy. In the past few years, with a data-driven feature extraction approach and end-to-end training, automatic deep learning-based multi-organ segmentation methods have far outperformed traditional methods and become a new research topic. This review systematically summarizes the latest research in this field. We searched Google Scholar for papers published from January 1, 2016 to December 31, 2023, using keywords "multi-organ segmentation" and "deep learning", resulting in 327 papers. We followed the PRISMA guidelines for paper selection, and 195 studies were deemed to be within the scope of this review. We summarized the two main aspects involved in multi-organ segmentation: datasets and methods. Regarding datasets, we provided an overview of existing public datasets and conducted an in-depth analysis. Concerning methods, we categorized existing approaches into three major classes: fully supervised, weakly supervised and semi-supervised, based on whether they require complete label information. We summarized the achievements of these methods in terms of segmentation accuracy. In the discussion and conclusion section, we outlined and summarized the current trends in multi-organ segmentation.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Automation
5.
Immunology ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859694

ABSTRACT

SET domain-containing 2 (SETD2) is a histone methyltransferase. It regulates the activity of H3K36me3 to enhance gene transcription. Macrophages (Mϕs) are one of the cell types involved in immune response. The purpose of this study is to clarify the role of SETD2 in regulating the immune property of Mϕ. The Mφs were isolated from the bronchoalveolar lavage fluid (BALF) and analysed through flow cytometry and RNA sequencing. A mouse strain carrying Mφs deficient in SETD2 was used. A mouse model of airway allergy was established with the ovalbumin/alum protocol. Less expression of SETD2 was observed in airway Mϕs in patients with allergic asthma. SETD2 of M2 cells was associated with the asthmatic clinical response. Sensitization reduced the expression of SETD2 in mouse respiratory tract M2 cells, which is associated with the allergic reaction. Depletion of SETD2 in Mφs resulted in Th2 pattern inflammation in the lungs. SETD2 maintained the immune regulatory ability in airway M2 cells. SETD2 plays an important role in the maintenance of immune regulatory property of airway Mφs.

6.
Appl Opt ; 63(12): 3130-3137, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856457

ABSTRACT

Numerous applications at the photon-starved regime require a free-space coupling single-photon detector with a large active area, low dark count rate (DCR), and superior time resolutions. Here, we developed a superconducting microstrip single-photon detector (SMSPD), with a large active area of 260 µm in diameter, a DCR of ∼5k c p s, and a low time jitter of ∼171p s, operated at a near-infrared of 1550 nm and a temperature of ∼2.0K. As a demonstration, we applied the detector to a single-pixel galvanometer scanning system and successfully reconstructed the object information in depth and intensity using a time-correlated photon counting technology.

7.
Nurs Open ; 11(6): e2203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845463

ABSTRACT

AIM: Nurses play a crucial role within medical institutions, maintaining direct interaction with patient data. Despite this, there is a scarcity of tools for evaluating nurses' perspectives on patient information security. This study aimed to translate the Information Security Attitude Questionnaire into Chinese and validate its reliability and validity among clinical nurses. DESIGN: A cross-sectional design. METHODS: A total of 728 clinical nurses from three hospitals in China participated in this study. The Information Security Attitude Questionnaire (ISA-Q) was translated into Chinese utilizing the Brislin two-way translation method. The reliability was assessed through internal consistency coefficient and test-retest reliability. The validity was determined through the Delphi expert consultation method and factor analysis. RESULTS: The Chinese version of ISA-Q consists of 30 items. Cronbach's α coefficient of the questionnaire was 0.930, and Cronbach's α coefficient of the six dimensions ranged from 0.781 to 0.938. The split-half reliability and test-retest reliability were 0.797 and 0.848, respectively. The content validity index (S-CVI) was 0.962. Exploratory factor analysis revealed a 6-factor structure supported by eigenvalues, total variance interpretation, and scree plots, accounting for a cumulative variance contribution rate of 69.436%. Confirmatory factor analysis further validated the 6-factor structure, demonstrating an appropriate model fit. CONCLUSION: The robust reliability and validity exhibited by the Chinese version of ISA-Q establish it as a dependable tool for evaluating the information security attitudes of clinical nurses. IMPLICATIONS FOR NURSING PRACTICE: The Chinese iteration of the ISA-Q questionnaire offers a profound insight into the information security attitudes held by clinical nurses. This understanding serves as a foundation for nursing managers to develop targeted intervention strategies aimed at fortifying nurses' information security attitudes, thereby enhancing patient safety.


Subject(s)
Attitude of Health Personnel , Psychometrics , Humans , Surveys and Questionnaires/standards , Reproducibility of Results , China , Cross-Sectional Studies , Female , Adult , Male , Psychometrics/instrumentation , Psychometrics/standards , Psychometrics/methods , Nurses/psychology , Nurses/statistics & numerical data , Computer Security/standards , Translating , Middle Aged , Factor Analysis, Statistical
8.
ACS Nano ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841753

ABSTRACT

Methanogenic archaea, characterized by their cell membrane lipid molecules consisting of isoprenoid chains linked to glycerol-1-phosphate via ether bonds, exhibit exceptional adaptability to extreme environments. However, this distinct lipid architecture also complicates the interactions between methanogenic archaea and nanoparticles. This study addresses this challenge by exploring the interaction and transformation of selenium nanoparticles (SeNPs) within archaeal Methanosarcina acetivorans C2A. We demonstrated that the effects of SeNPs are highly concentration-dependent, with chemical stimulation of cellular processes at lower SeNPs concentrations as well as oxidative stress and metabolic disruption at higher concentrations. Notably, we observed the formation of a protein corona on SeNPs, characterized by the selective adsorption of enzymes critical for methylotrophic methanogenesis and those involved in selenium methylation, suggesting potential alterations in protein function and metabolic pathways. Furthermore, the intracellular transformation of SeNPs into both inorganic and organic selenium species highlighted their bioavailability and dynamic transformation within archaea. These findings provide vital insights into the nano-bio interface in archaeal systems, contributing to our understanding of archaeal catalysis and its broader applications.

9.
World J Emerg Med ; 15(3): 206-213, 2024.
Article in English | MEDLINE | ID: mdl-38855370

ABSTRACT

BACKGROUND: This study aims to explore whether Xuebijing (XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism. METHODS: A rat model of sepsis was established by cecal ligation and puncture (CLP). A total of 30 male SD rats were divided into four groups: sham group, CLP group, XBJ + axitinib group, and XBJ group. XBJ was intraperitoneally injected 2 h before CLP. Hemodynamic data (blood pressure and heart rate) were recorded. The intestinal microcirculation data of the rats were analyzed via microcirculation imaging. Enzyme-linked immunosorbent assay (ELISA) kits were used to detect the serum levels of interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) in the rats. Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats. The expression of vascular endothelial growth factor A (VEGF-A), phosphoinositide 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), protein kinase B (Akt), and phosphorylated Akt (p-Akt) in the small intestine was analyzed via Western blotting. RESULTS: XBJ improved intestinal microcirculation dysfunction in septic rats, alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa, and reduced the systemic inflammatory response. Moreover, XBJ upregulated the expression of VEGF-A, p-PI3K/total PI3K, and p-Akt/total Akt in the rat small intestine. CONCLUSION: XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.

10.
Autism Res ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850067

ABSTRACT

Propofol sedation, routinely used for endoscopic procedures, is safe and acceptable for children. Adjuvants, such as esketamine or sufentanil, are commonly added to improve the efficacy and safety of propofol sedation. This study aimed to compare the clinical efficacy and safety of propofol-esketamine (PE) versus propofol-sufentanil (PS) for deep sedation and analgesia in children with autism undergoing colonoscopy procedure. One hundred and twenty-four children with autism undergoing colonoscopy procedure were included in the study. Patients were randomly assigned to receive one of the two adjuvants: esketamine (0.3 mg/kg) or sufentanil (0.2 µg/kg), subsequently administered propofol 2.0 mg/kg to induce anesthesia. Additional doses of propofol (0.5-1.0 mg/kg) were administered as needed to ensure patient tolerance for the remaining duration of the procedure. Movement during the procedure, hemodynamic variables, the total dose of propofol, recovery time, and adverse events were recorded. The PE group exhibited a significantly lower incidence of severe movement during the procedure compared with the PS group (14.52% vs. 32.26%, p = 0.020). The PE group showed significantly lower incidence of respiratory depression, hypotension, and severe injection pain of propofol than the PS group during the procedure (all p < 0.05). The mean arterial pressure (MAP) decreased significantly after anesthesia induction in the PS group and remained lower than baseline (all p < 0.05). Compared with the combination of low-dose sufentanil (0.2 µg/mg) with propofol, the low-dose esketamine (0.3 mg/kg) combined with propofol provided more stable hemodynamics, higher quality of sedation, and fewer adverse events in children with autism undergoing colonoscopy procedure.

11.
Nat Commun ; 15(1): 4223, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762554

ABSTRACT

Motivated by recent experimental observations of opposite Chern numbers in R-type twisted MoTe2 and WSe2 homobilayers, we perform large-scale density-functional-theory calculations with machine learning force fields to investigate moiré band topology across a range of twist angles in both materials. We find that the Chern numbers of the moiré frontier bands change sign as a function of twist angle, and this change is driven by the competition between moiré ferroelectricity and piezoelectricity. Our large-scale calculations, enabled by machine learning methods, reveal crucial insights into interactions across different scales in twisted bilayer systems. The interplay between atomic-level relaxation effects and moiré-scale electrostatic potential variation opens new avenues for the design of intertwined topological and correlated states, including the possibility of mimicking higher Landau level physics in the absence of magnetic field.

12.
Heliyon ; 10(9): e30673, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765154

ABSTRACT

To address the problem of difficult performance assessment of train control on-board system after recovery from failures, we have proposed a resilience assessment methodology that uses reliability as an indicator of system resilience. Since the system failures are time-dependent, we adopted the Discrete Time Bayesian Network method to obtain the system's reliability before and after failure. Subsequently, we used an exponential recovery model to quantify the system's performance curve during the recovery phase, and finally utilized the resilient triangle area method to quantify its resilience size. Analyzing the CTCS3-300T train control on-board system, we found that the resilience of the system with cold standby redundancy design and hot standby redundancy design were 89.44 % and 87.34 %, respectively, indicating a slight decrease in system performance after recovery from failures compared to pre-failure levels. At that time, it was necessary to adjust operational plans based on actual conditions to avoid greater impact on the railway network. This paper realizes performance resilience of train control on-board system after failure recovery, which can be applied to similar systems and provide theoretical references for realizing intelligent maintenance of the high-speed train.

13.
Front Neurol ; 15: 1340845, 2024.
Article in English | MEDLINE | ID: mdl-38689881

ABSTRACT

Peripheral nerve injury disease is a prevalent traumatic condition in current medical practice. Despite the present treatment approaches, encompassing surgical sutures, autologous nerve or allograft nerve transplantation, tissue engineering techniques, and others, an effective clinical treatment method still needs to be discovered. Exploring novel treatment methods to improve peripheral nerve regeneration requires more effort in investigating the cellular and molecular mechanisms involved. Many factors are associated with the regeneration of injured peripheral nerves, including the cross-sectional area of the injured nerve, the length of the nerve gap defect, and various cellular and molecular factors such as Schwann cells, inflammation factors, kinases, and growth factors. As crucial mediators of cellular communication, kinases exert regulatory control over numerous signaling cascades, thereby participating in various vital biological processes, including peripheral nerve regeneration after nerve injury. In this review, we examined diverse kinase classifications, distinct nerve injury types, and the intricate mechanisms involved in peripheral nerve regeneration. Then we stressed the significance of kinases in regulating autophagy, inflammatory response, apoptosis, cell cycle, oxidative processes, and other aspects in establishing conductive microenvironments for nerve tissue regeneration. Finally, we briefly discussed the functional roles of kinases in different types of cells involved in peripheral nerve regeneration.

14.
Cell Biochem Biophys ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709441

ABSTRACT

N6-methyladenine (m6A) and 5-methylcytosine (m5C) are two common forms of RNA methylation that play an important role in the epigenetics of type 2 diabetes mellitus (T2DM). One type of cell death, ferroptosis, has been implicated in islet ß-cell damage in T2DM. Notably, RNA methylation, an upstream regulatory mechanism of mRNAs, can regulate the expression of ferroptosis signaling molecules, thereby affecting cell proliferation and death. Here, we found that the ferroptosis signaling pathway was activated in pancreas of T2DM rats, followed by significant changes in m6A/m5C modification regulatory molecules. These detection data together with the prediction results that m6A and m5C exist in the mRNAs of ferroptosis molecules, we speculate that m6A and m5C are probably involved in pancreatic cell damage by modifying of ferroptosis signaling molecules. In short, our findings provide a new research idea for future studies on the molecular mechanisms of pancreatic cell damage and point to a new direction for exploring the mechanisms of ferroptosis from the perspective of RNA methylation modification.

15.
Adv Physiol Educ ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695082

ABSTRACT

Embedding clinically relevant learning experience to basic science subjects is desired for the preclinical phase of the undergraduate medical education. The present study aims to modify case-based learning (CBL) with role-playing situational teaching method and assess the student feedback and learning effect. 176 sophomore students majoring in clinical medicine from Harbin Medical University were randomly divided into two groups: the control group (n=90) who received the traditional hybrid teaching, and the experimental group (n=86), who received the role-playing situational teaching. Students in the experimental group were given a one-week pre-class preparation to dramatize a hyperthyroidism scenario through online autonomous learning of thyroid physiology, and performed the patient's consultation process in class, followed by a student presentation about key points of lecture content and a question-driven discussion. A posttest and questionnaire survey were conducted after class. The test scores of the two groups had no statistical differences, whereas the rate of excellence (high scores) of the experimental group was significantly higher than that of the control group. Furthermore, the record of online self-directed learning engagements was significantly improved in the experimental group. In the questionnaire, more than 70% of the students showed positive attitudes towards the role-playing situational teaching method and were willing to participate in other chapters of the physiology course. Such results show that CBL supported by role-playing situational teaching method encourages active learning and improves the application of basic knowledge of physiology, which can be incorporated in the preclinical curriculums to bridge the gap between theory and practice.

16.
Front Public Health ; 12: 1378723, 2024.
Article in English | MEDLINE | ID: mdl-38706551

ABSTRACT

Background: Strengthening the construction of community resilience and reducing disaster impacts are on the agenda of the Chinese government. The COVID-19 pandemic could alter the existing community resilience. This study aims to explore the dynamic change trends of community resilience in China and analyze the primary influencing factors of community resilience in the context of COVID-19, as well as construct Community Resilience Governance System Framework in China. Methods: A community advancing resilience toolkit (CART) was used to conduct surveys in Guangdong, Sichuan, and Heilongjiang provinces in China in 2015 and 2022, with community resilience data and information on disaster risk awareness and disaster risk reduction behaviors of residents collected. The qualitative (in-depth interview) data from staffs of government agencies and communities (n = 15) were pooled to explore Community Resilience Governance System Framework in China. Descriptive statistics analysis and t-tests were used to investigate the dynamic development of community resilience in China. Hierarchical regression analysis was performed to explore the main influencing factors of residential community resilience with such socio-demographic characteristics as gender and age being controlled. Results: The results indicate that community resilience in China has improved significantly, presenting differences with statistical significance (p < 0.05). In 2015, connection and caring achieved the highest score, while disaster management achieved the highest score in 2022, with resources and transformative potential ranking the lowest in their scores in both years. Generally, residents presented a high awareness of disaster risks. However, only a small proportion of residents that were surveyed had participated in any "community-organized epidemic prevention and control voluntary services" (34.9%). Analysis shows that core influencing factors of community resilience include: High sensitivity towards major epidemic-related information, particular attention to various kinds of epidemic prevention and control warning messages, participation in epidemic prevention and control voluntary services, and formulation of epidemic response plans. In this study, we have constructed Community Resilience Governance System Framework in China, which included community resilience risk awareness, community resilience governance bodies, community resilience mechanisms and systems. Conclusion: During the pandemic, community resilience in China underwent significant changes. However, community capital was, is, and will be a weak link to community resilience. It is suggested that multi-stages assessments of dynamic change trends of community resilience should be further performed to analyze acting points and core influencing factors of community resilience establishment at different stages.


Subject(s)
COVID-19 , Resilience, Psychological , Humans , China/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Male , Female , Surveys and Questionnaires , Adult , Middle Aged , SARS-CoV-2 , Pandemics
17.
Clin Immunol ; 264: 110234, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740111

ABSTRACT

BACKGROUND: Natural anti-cytokine autoantibodies can regulate homeostasis of infectious and inflammatory diseases. The anti-cytokine autoantibody profile and relevance to the pathogenesis of asthma are unknown. We aim to identify key anti-cytokine autoantibodies in asthma patients, and reveal their immunological function and clinical significance. METHODS: A Luciferase Immunoprecipitation System was used to screen serum autoantibodies against 11 key cytokines in patients with allergic asthma and healthy donors. The antigen-specificity, immunomodulatory functions and clinical significance of anti-cytokine autoantibodies were determined by ELISA, qPCR, neutralization assays and statistical analysis, respectively. Potential conditions for autoantibody induction were revealed by in vitro immunization. RESULTS: Of 11 cytokines tested, only anti-IL-33 autoantibody was significantly increased in asthma, compare to healthy controls, and the proportion positive was higher in patients with mild-to-moderate than severe allergic asthma. In allergic asthma patients, the anti-IL-33 autoantibody level correlated negatively with serum concentration of pathogenic cytokines (e.g., IL-4, IL-13, IL-25 and IL-33), IgE, and blood eosinophil count, but positively with mid-expiratory flow FEF25-75%. The autoantibodies were predominantly IgG isotype, polyclonal and could neutralize IL-33-induced pathogenic responses in vitro and in vivo. The induction of the anti-IL-33 autoantibody in blood B-cells in vitro required peptide IL-33 antigen along with a stimulation cocktail of TLR9 agonist and cytokines IL-2, IL-4 or IL-21. CONCLUSIONS: Serum natural anti-IL-33 autoantibodies are selectively induced in some asthma patients. They ameliorate key asthma inflammatory responses, and may improve lung function of allergic asthma.

18.
Chem Biodivers ; : e202401097, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760978

ABSTRACT

Two uncommon epoxyquinols, pyrrolocytosporin A (1) and cytosporin E2 (2), along with the known cytosporin Y1 (3), were isolated from the solid defined medium of the Arctic-derived fungus Eutypella sp. D-1. Their structures were established through comprehensive analyses of spectroscopic and electronic circular dichroism data. Structurally, compound 1 represented the first nitrogen-containing epoxyquinol characterized by a pyrrole fused cytosporin framework, while compound 2 contained an uncommon cyclic carbonate functionality. The antibacterial, immunosuppressive, anti-inflammatory, and cytotoxic activities of all compounds were evaluated. Among the three metabolites, only compound 1 exhibited inhibitory effects on nitric oxide production induced by lipopolysaccharide with an IC50 value of 6.55 µM. Additionally, only compound 2 displayed inhibitory activity against ConA-induced T-cell proliferation with an IC50 value of 9.85 µM.

19.
Sci Total Environ ; 932: 173061, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723970

ABSTRACT

Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha-1. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.


Subject(s)
Arachis , Charcoal , Nitrogen Fixation , Plant Roots , Soil , Arachis/growth & development , Soil/chemistry , Soil Microbiology , Fertilizers , Manure
20.
Funct Plant Biol ; 512024 May.
Article in English | MEDLINE | ID: mdl-38801747

ABSTRACT

Rapid wound healing is crucial in protecting sweet potatoes (Ipomoea batatas ) against infection, water loss and quality deterioration during storage. The current study investigated how acibenzolar-S-methyl (ASM) treatment influenced wound healing in harvested sweet potatoes by investigating the underlying mechanism. It was found that ASM treatment of wounded sweet potatoes induced a significant accumulation of lignin at the wound sites, which effectively suppressed weight loss. After 4days of healing, the lignin content of ASM-treated sweet potatoes was 41.8% higher than that of untreated ones, and the weight loss rate was 20.4% lower. Moreover, ASM treatment increased the ability of sweet potatoes to defend against wounding stress through enhancing processes such as increased production of reactive oxygen species (ROS), activation of enzymes involved in the ROS metabolism (peroxidase, superoxide dismutase and catalase) and phenylpropanoid pathway (phenylalanine ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate-CoA ligase and cinnamyl alcohol dehydrogenase), and intensive synthesis of phenolics and flavonoids. These results suggest that treating harvested sweet potatoes with ASM promotes wound healing through the activation of the ROS metabolism and phenylpropanoid pathway.


Subject(s)
Ipomoea batatas , Lignin , Reactive Oxygen Species , Ipomoea batatas/metabolism , Reactive Oxygen Species/metabolism , Lignin/metabolism , Wound Healing/drug effects , Plant Proteins/metabolism , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...