Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Food Chem ; 453: 139639, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759442

ABSTRACT

This study reports the fabrication of three-dimensional gold nanocrystals as sensing material in the presence of l-glutathion and high-performance aptamer with 20 bases of α-amanitin via truncation and optimization of along aptamer. The resulting maple leaf-like gold nanocrystal (ML-Au) exhibits an improved catalytic activity due to more exposed high-index facets. The use of truncated aptamer increases the sensitivity by 15 times and reduces the reaction time by two times compared with those of original aptamer. An α-amanitin electrochemical biosensor constructed by integrating ML-Au nanocrystals with truncated aptamer exhibits high sensitivity, selectivity and rapidity. An increase of the α-amanitin concentration in the range of 1 × 10-14-1 × 10-9 M causes a linear decrease in the amperometric current with a limit of detection of 2.9 × 10-15 M (S/N = 3). The proposed analytical method is satisfactorily used for electrochemical sensing of α-amanitin in urine and wild mushroom samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Metal Nanoparticles , Gold/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Agaricales/chemistry , Humans
2.
ACS Omega ; 9(15): 17334-17343, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645335

ABSTRACT

The constituent ions of calcium phosphate in body fluids are in the supersaturated state and tend to form minerals physiologically or pathologically. Inorganic pyrophosphate (PPi) has been considered as one of the most important inhibitors against the formation of calcium phosphate minerals. However, serum PPi concentrations in humans are maintained at a level of several µmol/L, and its effectiveness and mechanism for mineralization inhibition remain ambiguous. Therefore, this work studied the mineralization process in an aqueous solution, explored the effective inhibitory concentration of PPi by titration, and characterized the species during the reactions. We find that PPi at a normal serum concentration does not inhibit mineralization significantly. Such a conclusion was further confirmed in the PPi-added serum. This work indicates that PPi may not be a major direct inhibitor of mineralization in serum and possibly functions via alternative mechanisms.

3.
Angew Chem Int Ed Engl ; 63(13): e202401168, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38336924

ABSTRACT

The atomically dispersed metal catalysts with full atomic utilization and well-defined site structure hold great promise for various catalytic reactions. However, the single metallic site limits the comprehensive reaction performance in most reactions. Here, we demonstrated a photo-induced neighbour-deposition strategy for the precise synthesis of diatomic Ir1 Pd1 on In2 O3 applied for CO2 hydrogenation to methanol. The proximity synergism between diatomic sites enabled a striking promotion in both CO2 conversion (10.5 %) and methanol selectivity (97 %) with good stability of 100 h run. It resulted in record-breaking space-time yield to methanol (187.1 gMeOH gmetal -1  hour-1 ). The promotional effect mainly originated from stronger CO2 adsorption on Ir site with assistance of H-spillover from Pd site, thus leading to a lower energy barrier for *HCOO pathway. It was confirmed that this synergistic effect strongly depended on the dual-site distance in an angstrom scale, which was attributed to weaker *H spillover and less electron transfer from Pd to Ir site as the Pd-to-Ir distance increased. The average dual-site distance was evaluated by our firstly proposed photoelectric model. Thus, this study introduced a pioneering strategy to precisely synthesize homonuclear/heteronuclear diatomic catalysts for facilitating the desired reaction route via diatomic synergistic catalysis.

4.
Adv Healthc Mater ; 13(7): e2302893, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38060694

ABSTRACT

Bandages for daily wounds are the most common medical supplies, but there are still ingrained defects in their appearance, comfort, functions, as well as environmental pollution. Here, novel bandages based on bacterial cellulose (BC) membrane for wound monitoring and advanced wound management are developed. The BC membrane is combined with silver nanowires (AgNWs) by using vacuum filtration method to achieve transparent, ultrathin (≈7 µm), breathable (389.98-547.79 g m-2  d-1 ), and sandwich-structured BC/AgNWs bandages with superior mechanical properties (108.45-202.35 MPa), antibacterial activities against Escherichia coli and Staphylococcus aureus, biocompatibility, and conductivity (9.8 × 103 -2.0 × 105  S m-1 ). Significantly, the BC/AgNWs bandage is used in the electrical stimulation (direct current, 600  microamperes for 1 h every other day) treatment of full-thickness skin defect in rats, which obviously promotes wound healing by increasing the secretion of vascular endothelial growth factor (VEGF). The BC bandage is used for monitoring wounds and achieve a high accuracy of 94.7% in classifying wound healing stages of hemostasis, inflammation, proliferation, and remodeling, by using a convolutional neural network. The outcomes of this study not only provide two BC-based bandages as multifunctional wound management, but also demonstrate a new strategy for the development of the next generation of smart bandage.


Subject(s)
Cellulose , Nanowires , Rats , Animals , Silver , Vascular Endothelial Growth Factor A , Anti-Bacterial Agents , Bandages , Electric Stimulation
5.
Adv Mater ; 35(40): e2302613, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37390487

ABSTRACT

Hard carbon anodes with all-plateau capacities below 0.1 V are prerequisites to achieve high-energy-density sodium-ion storage, which holds promise for future sustainable energy technologies. However, challenges in removing defects and improving the insertion of sodium ions head off the development of hard carbon to achieve this goal. Herein, a highly cross-linked topological graphitized carbon using biomass corn cobs through a two-step rapid thermal-annealing strategy is reported. The topological graphitized carbon constructed with long-range graphene nanoribbons and cavities/tunnels provides a multidirectional insertion of sodium ions whilst eliminating defects to absorb sodium ions at the high voltage region. Evidence from advanced techniques including in situ XRD, in situ Raman, and in situ/ex situ transmission electron microscopy (TEM) indicates that the sodium ions' insertion and Na cluster formation occurred between curved topological graphite layers and in the topological cavity of adjacent graphite band entanglements. The reported topological insertion mechanism enables outstanding battery performance with a single full low-voltage plateau capacity of 290 mAh g-1 , which is almost 97% of the total capacity.

6.
Small ; 19(43): e2302687, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37376874

ABSTRACT

Rechargeable sodium ion batteries (SIBs) have promising applications in large-scale energy storage systems. Iron-based Prussian blue analogs (PBAs) are considered as potential cathodes owing to their rigid open framework, low-cost, and simple synthesis. However, it is still a challenge to increase the sodium content in the structure of PBAs and thus suppress the generation of defects in the structure. Herein, a series of isostructural PBAs samples are synthesized and the isostructural evolution of PBAs from cubic to monoclinic after modifying the conditions is witnessed. Accompanied by, the increased sodium content and crystallinity are discovered in PBAs structure. The as-obtained sodium iron hexacyanoferrate (Na1.75 Fe[Fe(CN)6 ]0.9743 ·2.76H2 O) exhibits high charge capacity of 150 mAh g-1 at 0.1 C (17 mA g-1 ) and excellent rate performance (74 mAh g-1 at 50 C (8500 mA g-1 )). Moreover, their highly reversible Na+ ions intercalation/de-intercalation mechanism is verified by in situ Raman and Powder X-ray diffraction (PXRD) techniques. More importantly, the Na1.75 Fe[Fe(CN)6 ]0.9743 ·2.76H2 O sample can be directly assembled in a full cell with hard carbon (HC) anode and shows excellent electrochemical performances. Finally, the relationship between PBAs structure and electrochemical performance is summarized and prospected.

7.
Adv Healthc Mater ; 12(24): e2300727, 2023 09.
Article in English | MEDLINE | ID: mdl-37300366

ABSTRACT

Bone is a naturally mineralized tissue with a remarkable hierarchical structure, and the treatment of bone defects remains challenging. Microspheres with facile features of controllable size, diverse morphologies, and specific functions display amazing potentials for bone regeneration. Herein, inspired by natural biomineralization, a novel enzyme-catalyzed reaction is reported to prepare magnesium-based mineralized microspheres. First, silk fibroin methacryloyl (SilMA) microspheres are prepared using a combination of microfluidics and photo-crosslinking. Then, the alkaline phosphatase (ALP)-catalyzed hydrolysis of adenosine triphosphate (ATP) is successfully used to induce the formation of spherical magnesium phosphate (MgP) in the SilMA microspheres. These SilMA@MgP microspheres display uniform size, rough surface structure, good degradability, and sustained Mg2+ release properties. Moreover, the in vitro studies demonstrate the high bioactivities of SilMA@MgP microspehres in promoting the proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Transcriptomic analysis shows that the osteoinductivity of SilMA@MgP microspheres may be related to the activation of the PI3K/Akt signaling pathway. Finally, the bone regeneration enhancement units (BREUs) are designed and constructed by inoculating BMSCs onto SilMA@MgP microspheres. In summary, this study demonstrates a new biomineralization strategy for designing biomimetic bone repair materials with defined structures and combination functions.


Subject(s)
Magnesium , Osteogenesis , Microspheres , Phosphatidylinositol 3-Kinases , Bone Regeneration , Cell Differentiation
8.
ACS Appl Mater Interfaces ; 15(23): 28106-28115, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37260316

ABSTRACT

Metal-CO2 batteries, especially Li-CO2 and Na-CO2 batteries, are regarded as ideal new-generation energy storage systems owing to their high energy density and extraordinary CO2 capture capability. However, the advancement of metal-CO2 batteries is still at an early stage. The problems caused by accumulation of carbonates during charge-discharge cycles, such as large polarization and poor reversibility, restrict their practical application. Therefore, designing efficient catalysts is crucial for promoting the decomposition of carbonate to improve the electrochemical performance of metal-CO2 batteries. Herein, we first adopted sea urchin-like γ-MnO2 as the cathode material for Li/Na-CO2 batteries. Benefiting from the unique structure and excellent catalytic activity of γ-MnO2, the as-prepared Li-CO2 and Na-CO2 batteries can achieve low overpotentials of 1.28 and 1.36 V, respectively, at a current density of 100 mA g-1 with a cutoff capacity of 1000 mA h g-1. The overpotentials are lower than those of most of the state-of-the-art catalysts in previous reports. After 100 and 50 cycles of Li-CO2 and Na-CO2 batteries, respectively, their charging termination voltages remain at around 4.1 and 3.9 V, respectively; such a low charging platform indicates the excellent catalytic activity of the γ-MnO2 cathode on the discharge products. Our findings offer a promising guideline to design efficient electrocatalysts for high-performance metal-CO2 batteries.

9.
Clin Case Rep ; 11(3): e7061, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36937646

ABSTRACT

A 16-year-old girl developed severe acute periodontitis involving the maxillary central incisor and lateral incisor caused by elastic bands. Periodontal surgical interventions and orthodontic adjustment achieved good outcomes which were maintained for 7 years. This report demonstrates the criticality of correct diagnosis, early periodontal surgery, and interdisciplinary approach.

10.
Adv Mater ; 35(17): e2210082, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738238

ABSTRACT

Sustainable organic electrode materials, as promising alternatives to conventional inorganic electrode materials for sodium-ion batteries (SIBs), are still challenging to realize long-lifetime and high-rate batteries because of their poor conductivity, limited electroactivity, and severe dissolution. It is also urgent to deeply reveal their electrochemical mechanism and evolution processes. A porous organic polymer (POP) with a conjugated and hierarchical structure is designed and synthesized here. The unique molecule and structure endow the POP with electron delocalization, high ionic diffusivity, plentiful active sites, exceptional structure stability, and limited solubility in electrolytes. When evaluated as an anode for SIBs, the POP exhibits appealing electrochemical properties regarding reversible capacity, rate behaviors, and long-duration life. Importantly, using judiciously combined experiments and theoretical computation, including in situ transmission electron microscopy (TEM), and ex situ spectroscopy, we reveal the Na-storage mechanism and dynamic evolution processes of the POP, including 12-electron reaction process with Na, low volume expansion (125-106% vs the initial 100%), and stable composition and structure evolution during repeating sodiation/de-sodiation processes. This quantitative design for ultrafast and highly durable sodium storage in the POP could be of immediate benefit for the rational design of organic electrode materials with ideal electrochemical properties.

11.
Small Methods ; 7(4): e2201566, 2023 04.
Article in English | MEDLINE | ID: mdl-36811239

ABSTRACT

Wearable electronics are garnering growing interest in various emerging fields including intelligent sensors, artificial limbs, and human-machine interfaces. A remaining challenge is to develop multisensory devices that can conformally adhere to the skin even during dynamic-moving environments. Here, a single electronic tattoo (E-tattoo) based on a mixed-dimensional matrix network, which integrates two-dimensional  MXene nanosheets and one-dimensional cellulose nanofibers/Ag nanowires, is presented for multisensory integration. The multidimensional configurations endow the E-tattoo with excellent multifunctional sensing capabilities including temperature, humidity, in-plane strain, proximity, and material identification. In addition, benefiting from the satisfactory rheology of hybrid inks, the E-tattoos are able to be fabricated through multiple facile strategies including direct writing, stamping, screen printing, and three-dimensional printing on various hard/soft substrates. Especially, the E-tattoo with excellent triboelectric properties also can serve as a power source for activating small electronic devices. It is believed that these skin-conformal E-tattoo systems can provide a promising platform for next-generation wearable and epidermal electronics.


Subject(s)
Tattooing , Humans , Tattooing/methods , Skin , Electronics , Epidermis
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-972197

ABSTRACT

@#Gingival recessions (GRs) result in root hypersensitivity, root surface caries, and esthetic problems. Various root coverage surgeries are being developed for periodontal plastic therapy. The tunnel technique (TUN) is one of the most widely applied surgeries due to its features of being minimally invasive, practical, excellent outcomes and long-term stability; however, there are still some limitations of this technique. The history and evolution from the envelope flap to TUN, including its efficiency when compared with coronally advanced flaps with a connective tissue graft (CTG), are reviewed in this paper. The limitations of TUN are discussed in consideration of our clinical experience; for example, there is high technique sensitivity when TUN is applied in GR>5 mm because of the great difficulty in covering the grafts. The advantages of surgical access, including vertical incisions in the vestibule, “W” type and pinhole access, are discussed for different situations. Mattress sutures and sling sutures in a single tooth or multiple teeth are applied in TUN. The different types of grafts, such as CTG, platelet-rich plasma, articular dermal matrix and xenogeneic collagen matrix, are described. Mechanical, chemical and biological conditioning of the root surface are recommended during surgery. Protecting the surgical area and taking antibiotics postoperatively are also very important. Finally, the modifications when TUN is applied with other kinds of techniques are discussed, including lateral closed TUN, laterally positioned flaps, double papilla flaps and frenuloplasty. Minimally invasive, esthetic, long-term stability and simplified techniques are the development trends of TUN in the future.

13.
Angew Chem Int Ed Engl ; 61(44): e202210991, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36083187

ABSTRACT

Development of effective and stable catalysts for CO2 hydrogenation into ethanol remains a challenge. Herein, we report that Rh1 /CeTiOx single-atom catalyst constructed by embedding monoatomic Rh onto Ti-doped CeO2 support has shown a super high ethanol selectivity (≈99.1 %), record-breaking turnover frequency (493.1 h-1 ), and outstanding stability. Synergistic effects of Ti-doption and monoatomic Rh contribute to this excellent catalytic performance by firstly facilitating oxygen vacancies formation to generate oxygen-vacancy-Rh Lewis-acid-base pairs, which favor CO2 adsorption and activation, cleavage of C-O bonds in CHx OH* and COOH* into CHx * and CO* species, subsequent C-C coupling and hydrogenation into ethanol, and secondly generating strong Rh-O bond by Ti-doping-induced crystal reconstruction, which contributes to striking stability. This work highlights the importance of support elaborating regulation for single-atom catalyst design to substantially improve the catalytic performance.

14.
Biomed Res Int ; 2022: 5239515, 2022.
Article in English | MEDLINE | ID: mdl-35711518

ABSTRACT

In order to study the neck response of elderly drivers in rear collision, a finite element model for elderly neck was built. By comparing the cadaver experiment data in the literature, the simulation reliability of the head and neck model of the elderly under dynamic load was verified. Through the C-NCAP rear-end collision test on the elderly model, the study showed that the neck of the elderly driver had good dynamic response characteristics. The verified finite element model was used to analyze the head and neck collision response and injury risk of the elderly under different distances between the head and the headrest (vertical distance and horizontal distance). By analyzing the head and neck injuries of occupants at different distances, it was found that when the horizontal distance was 50 mm, and the vertical distance was between +10 and ~+20 mm, the headrest could play the best role in protecting the neck of the elderly driver and could reduce the degree of injury of the elderly driver in the process of rear collision.


Subject(s)
Accidents, Traffic , Head , Aged , Computer Simulation , Head/physiology , Humans , Lower Extremity , Neck , Reproducibility of Results
15.
Small Methods ; 6(8): e2200404, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35730654

ABSTRACT

Prussian blue analogues (PBAs) have attracted extensive attention as cathode materials in sodium-ion batteries (SIBs) due to their low cost, high theoretical capacity, and facile synthesis process. However, it is of great challenge to control the crystal vacancies and interstitial water formed during the aqueous co-precipitation method, which are also the key factors in determining the electrochemical performance. Herein, an antioxidant and chelating agent co-assisted non-aqueous ball-milling method to generate highly-crystallized Na2- x Fe[Fe(CN)6 ]y with hollow structure is proposed by suppressing the speed and space of crystal growth. The as-prepared Na2- x Fe[Fe(CN)6 ]y hollow nanospheres show low vacancies and interstitial water content, leading to a high sodium content. As a result, the Na-rich Na1.51 Fe[Fe(CN)6 ]0.87 ·1.83H2 O hollow nanospheres exhibit a high initial Coulombic efficiency, excellent cycling stability, and rate performance via a highly reversible two-phase transition reaction confirmed by in situ X-ray diffraction. It delivers a specific capacity of 124.2 mAh g-1 at 17 mA g-1 , presenting ultra-high rate capability (84.1 mAh g-1 at 3400 mA g-1 ) and cycling stability (65.3% capacity retention after 1000 cycles at 170 mA g-1 ). Furthermore, the as-reported non-aqueous ball-milling method could be regarded as a promising method for the scalable production of PBAs as cathode materials for high-performance SIBs.

16.
Nanomicro Lett ; 14(1): 119, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35505260

ABSTRACT

User-interactive electronic skin (e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing devices have the disadvantages such as complex integration procedure and lack of the intuitive signal display function. Here, we present a bioinspired user-interactive e-skin, which is simple in structure and can synchronously achieve digital electrical response and optical visualization upon external mechanical stimulus. The e-skin comprises a conductive layer with a carbon nanotubes/cellulose nanofibers/MXene nanohybrid network featuring remarkable electromechanical behaviors, and a stretchable elastomer layer, which is composed of silicone rubber and thermochromic pigments. Furthermore, the conductive nanohybrid network with outstanding Joule heating performance can generate controllable thermal energy under voltage input and then achieve the dynamic coloration of silicone-based elastomer. Especially, such an innovative fusion strategy of digital data and visual images enables the e-skin to monitor human activities with evermore intuition and accuracy. The simple design philosophy and reliable operation of the demonstrated e-skin are expected to provide an ideal platform for next-generation flexible electronics.

17.
Small Methods ; 6(6): e2200209, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35466574

ABSTRACT

High energy density and long-term cycling stability are crucial factors for the commercialization of sodium batteries in large scale. In this regard, cathode materials that can operate at high voltage have attracted great interest owing to their high energy density. However, traditional electrolytes cannot be used in high-voltage sodium batteries due to their limited oxidative stability. Therefore, there is a great challenge to develop appropriate electrolytes for high-voltage cathode materials. Herein, a diluted fluoroethylene carbonate (FEC)-based electrolyte (1 m NaPF6 in FEC/DMC = 2/8 by volume) is designed for Na4 Co3 (PO4 )2 P2 O7 (NCPP) cathode with a high operation voltage of 4.7 V to achieve superior electrochemical performance with a capacity retention of 90.10% after 500 cycles at 0.5 C and capacity retention of 89.99% after 1000 cycles at 1 C. The excellent electrochemical performance of the NCPP||Na cells can be attributed to the formation of inorganic and robust NaF-rich cathode electrolyte interphase and F-rich solid electrolyte interface on high voltage NCPP cathode and Na metal anode, respectively. This work points out a very promising strategy to develop high-voltage sodium batteries toward practical applications.

18.
J Am Chem Soc ; 144(16): 7117-7128, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35417174

ABSTRACT

The application of peptide drugs in cancer therapy is impeded by their poor biostability and weak cell permeability. Therefore, it is imperative to find biostable and cell-permeable peptide drugs for cancer treatment. Here, we identified a potent, selective, biostable, and cell-permeable cyclic d-peptide, NKTP-3, that targets NRP1 and KRASG12D using structure-based virtual screening. NKTP-3 exhibited strong biostability and cellular uptake ability. Importantly, it significantly inhibited the growth of A427 cells with the KRASG12D mutation. Moreover, NKTP-3 showed strong antitumor activity against A427 cell-derived xenograft and KRASG12D-driven primary lung cancer models without obvious toxicity. This study demonstrates that the dual NRP1/KRASG12D-targeting cyclic d-peptide NKTP-3 may be used as a potential chemotherapeutic agent for KRASG12D-driven lung cancer treatment.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Lung Neoplasms/pathology , Mutation , Peptides/genetics , Proto-Oncogene Proteins p21(ras)/genetics
19.
Sci Adv ; 8(2): eabk0133, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35030012

ABSTRACT

In situ spatial proteomics analysis of a single cell has not been achieved yet, mainly because of insufficient throughput and sensitivity of current techniques. Recent progress on immuno-nucleic acid amplification technology presents tremendous opportunities to address this issue. Here, we report an innovative hybridization chain reaction (HCR) technique that involves computer-aided design (CAD) and reversible assembly. CAD enables highly multiplexed HCR with a sequence database that can work in parallel, while reversible assembly enables the switching of HCR between a working state and a resting state. Thus, CAD-HCR has been successfully adopted for single-cell spatial proteomics analysis. The fluorescence signal of CAD-HCR is comparable with conventional immunofluorescence, and it is positively correlated with the abundance of target proteins, which is beneficial for the visualization of proteins. The method developed here expands the toolbox of single-cell analysis and proteomics studies, as well as the performance and application of HCR.

20.
Cell Mol Neurobiol ; 42(3): 807-816, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33026550

ABSTRACT

The perineurium serves as a selective, metabolically active diffusion barrier in the peripheral nervous system, which is composed of perineurial cells joined together by tight junctions (TJs). Not only are these junctions known to play an essential role in maintaining cellular polarity and tissue integrity, but also limit the paracellular diffusion of certain molecules and ions, whereas loss of TJs barrier function is imperative for tumour growth, invasion and metastasis. Hence, a detailed study on the barrier function of perineurial cells may provide insights into the molecular mechanism of perineural invasion (PNI). In this study, we aimed to develop an efficient procedure for the establishment of perineurial cell lines as a tool for investigating the physiology and pathophysiology of the peripheral nerve barriers. Herein, the isolation, expansion, characterization and maintenance of perineurial cell lines under favourable conditions are presented. Furthermore, the analysis of the phenotypic features of these perineurial cells as well as the barrier function for the study of PNI are described. Such techniques may provide a valuable means for the functional and molecular investigation of perineurial cells, and in particular may elucidate the pathogenesis and progression of PNI, and other peripheral nerve disorders.


Subject(s)
Peripheral Nerves , Tight Junctions , Peripheral Nerves/physiology , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...