Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 939
Filter
1.
ACS Infect Dis ; 10(5): 1839-1855, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725407

ABSTRACT

Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , tat Gene Products, Human Immunodeficiency Virus/chemistry , Gram-Negative Bacteria/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Positive Bacteria/drug effects , Hydrophobic and Hydrophilic Interactions , Hydrocarbons/chemistry , Hydrocarbons/pharmacology , Hemolysis/drug effects , Protein Conformation, alpha-Helical
2.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38726929

ABSTRACT

The time-dependent quantum transportation through a metal/polymer/metal system is theoretically investigated on the basis of a Su-Schrieffer-Heeger model combined with the hierarchical equations of motion formalism. Using a non-adiabatic dynamical method, the evolution of the electron subspace and lattice atoms with time can be obtained. It is found that the calculated transient currents vary with time and reach stable values after a response time under the bias voltages. However, the stable current as the system reaches its dynamical steady state exhibits a discrepancy between two sweep directions of the bias voltage, which results in pronounced electrical hysteresis loops in the current-voltage curve. By analyzing the evolution of instantaneous energy eigenstates, the occupation number of the instantaneous eigenstates, and the lattice of the polymer, we show that the formation of excitons and the delay of their annihilation are responsible for the hysteretic current-voltage characteristics, where electron-phonon interactions play the key factor. Furthermore, the hysteresis width and amplitude can also be modulated by the strength of the electron-phonon coupling, level-width broadening function, and temperature. We hope these results about past condition-dependent switching performance at a sweep voltage can provide further insight into some of the basic issues of interest in hysteresis processes in conducting polymers.

3.
Small ; : e2401292, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726946

ABSTRACT

Nanodiamonds are metastable allotropes of carbon. Based on their high hardness, chemical inertness, high thermal conductivity, and wide bandgap, nanodiamonds are widely used in energy and engineering applications in the form of coatings, such as mechanical processing, nuclear engineering, semiconductors, etc., particularly focusing on the reinforcement in mechanical performance, corrosion resistance, heat transfer, and electrical behavior. In mechanical performance, nanodiamond coatings can elevate hardness and wear resistance, improve the efficiency of mechanical components, and concomitantly reduce friction, diminish maintenance costs, particularly under high-load conditions. Concerning chemical inertness and corrosion resistance, nanodiamond coatings are gradually becoming the preferred manufacturing material or surface modification material for equipment in harsh environments. As for heat transfer, the extremely high coefficient of thermal conductivity of nanodiamond coatings makes them one of the main surface modification materials for heat exchange equipment. The increase of nucleation sites results in excellent performance of nanodiamond coatings during the boiling heat transfer stage. Additionally, concerning electrical properties, nanodiamond coatings elevate the efficiency of solar cells and fuel cells, and great performance in electrochemical and electrocatalytic is found. This article will briefly describe the application and mechanism analysis of nanodiamonds in the above-mentioned fields.

4.
Arthritis Res Ther ; 26(1): 92, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725078

ABSTRACT

OBJECTIVE: The macrophage activation syndrome (MAS) secondary to systemic lupus erythematosus (SLE) is a severe and life-threatening complication. Early diagnosis of MAS is particularly challenging. In this study, machine learning models and diagnostic scoring card were developed to aid in clinical decision-making using clinical characteristics. METHODS: We retrospectively collected clinical data from 188 patients with either SLE or the MAS secondary to SLE. 13 significant clinical predictor variables were filtered out using the Least Absolute Shrinkage and Selection Operator (LASSO). These variables were subsequently utilized as inputs in five machine learning models. The performance of the models was evaluated using the area under the receiver operating characteristic curve (ROC-AUC), F1 score, and F2 score. To enhance clinical usability, we developed a diagnostic scoring card based on logistic regression (LR) analysis and Chi-Square binning, establishing probability thresholds and stratification for the card. Additionally, this study collected data from four other domestic hospitals for external validation. RESULTS: Among all the machine learning models, the LR model demonstrates the highest level of performance in internal validation, achieving a ROC-AUC of 0.998, an F1 score of 0.96, and an F2 score of 0.952. The score card we constructed identifies the probability threshold at a score of 49, achieving a ROC-AUC of 0.994 and an F2 score of 0.936. The score results were categorized into five groups based on diagnostic probability: extremely low (below 5%), low (5-25%), normal (25-75%), high (75-95%), and extremely high (above 95%). During external validation, the performance evaluation revealed that the Support Vector Machine (SVM) model outperformed other models with an AUC value of 0.947, and the scorecard model has an AUC of 0.915. Additionally, we have established an online assessment system for early identification of MAS secondary to SLE. CONCLUSION: Machine learning models can significantly improve the diagnostic accuracy of MAS secondary to SLE, and the diagnostic scorecard model can facilitate personalized probabilistic predictions of disease occurrence in clinical environments.


Subject(s)
Lupus Erythematosus, Systemic , Machine Learning , Macrophage Activation Syndrome , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Female , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/etiology , Retrospective Studies , Male , Adult , Middle Aged , Early Diagnosis , ROC Curve
5.
Opt Lett ; 49(9): 2421-2424, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691734

ABSTRACT

We report on an optical amplification and energy threshold of the two most prominent emission lines, 391.4 and 427.8 nm, of the cavity-less lasing of nitrogen ions pumped by femtosecond laser pulses. It was found that the two transitions both show optical amplification under a low gas pressure condition, while the 391.4 nm emission is barely amplified under high gas pressure. Moreover, the 427.8 nm emission presents a significant lower pump laser energy threshold and a larger gain factor than the 391.4 nm emission. Numerical simulations based on a three-state coupling model suggest that the smaller ionization Franck-Condon factor from the ground state of N2 to the vibrational level ν = 1 in X 2 Σ g+ state of N2 + favors the formation of population inversion corresponding to the 427.8 nm emission. Meanwhile, the competition between the strong field ionization and excitation induced by the pumping laser requires higher laser intensity to acquire the population inversion for the 391.4 nm radiation, leading to a corresponding larger energy threshold.

6.
J Magn Reson Imaging ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703135

ABSTRACT

BACKGROUND: Hypertension (HTN) and type 2 diabetes mellitus (T2DM) are both associated with left ventricular (LV) and left atrial (LA) structural and functional abnormalities; however, the relationship between the left atrium and ventricle in this population is unclear. PURPOSE: To identify differences between hypertensive patients with and without T2DM as the basis for further investigation the atrioventricular coupling relationship. STUDY TYPE: Cross-sectional, retrospective study. POPULATION: 89 hypertensive patients without T2DM [HTN (T2DM-)] (age: 58.4 +/- 11.9 years, 48 male), 62 hypertensive patients with T2DM [HTN (T2DM+)] (age: 58.5 +/- 9.1 years, 32 male) and 70 matched controls (age: 55.0 +/- 9.6 years, 37 male). FIELD STRENGTH/SEQUENCE: 2D balanced steady-state free precession cine sequence at 3.0 T. ASSESSMENT: LA reservoir, conduit, and booster strain (εs, εe, and εa) and strain rate (SRs, SRe, and SRa), LV radial, circumferential and longitudinal peak strain (PS) and peak systolic strain rate and peak diastolic strain rate (PSSR and PDSR) were derived from LA and LV cine images and compared between groups. STATISTICAL TESTS: Chi-square or Fisher's exact test, one-way analysis of variance, analysis of covariance, Pearson's correlation, multivariable linear regression analysis, and intraclass correlation coefficient. A P value <0.05 was considered significant. RESULTS: Compared with controls, εs, εe, SRe and PS-longitudinal, PDSR-radial, and PDSR-longitudinal were significantly lower in HTN (T2DM-) group, and they were even lower in HTN (T2DM+) group than in both controls and HTN (T2DM-) group. SRs, εa, SRa, as well as PS-radial, PS-circumferential, PSSR-radial, and PSSR-circumferential were significantly lower in HTN (T2DM+) compared with controls. Multivariable regression analyses demonstrated that: T2DM and PS-circumferential and PS-longitudinal (ß = -4.026, -0.486, and -0.670, respectively) were significantly associated with εs; T2DM and PDSR-radial and PDSR-circumferential were significantly associated with εe (ß = -3.406, -3.352, and -6.290, respectively); T2DM and PDSR-radial were significantly associated with SRe (ß = 0.371 and 0.270, respectively); T2DM and PDSR-longitudinal were significantly associated with εa (ß = -1.831 and 5.215, respectively); and PDSR-longitudinal was significantly associated with SRa (ß = 1.07). DATA CONCLUSION: In hypertensive patients, there was severer LA dysfunction in those with coexisting T2DM, which may be associated with more severe LV dysfunction and suggests adverse atrioventricular coupling. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 3.

7.
J Neurosci Res ; 102(5): e25338, 2024 May.
Article in English | MEDLINE | ID: mdl-38706427

ABSTRACT

The enzyme indoleamine 2,3 dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway (KP) which produces both neuroprotective and neurotoxic metabolites. Neuroinflammatory signals produced as a result of pathological conditions can increase production of IDO1 and boost its enzymatic capacity. IDO1 and the KP have been implicated in behavioral recovery after human traumatic brain injury (TBI), but their roles in experimental models of TBI are for the most part unknown. We hypothesized there is an increase in KP activity in the fluid percussion injury (FPI) model of TBI, and that administration of an IDO1 inhibitor will improve neurological recovery. In this study, adult male Sprague Dawley rats were subjected to FPI or sham injury and received twice-daily oral administration of the IDO1 inhibitor PF-06840003 (100 mg/kg) or vehicle control. FPI resulted in a significant increase in KP activity, as demonstrated by an increased ratio of kynurenine: tryptophan, in the perilesional neocortex and ipsilateral hippocampus 3 days postinjury (DPI), which normalized by 7 DPI. The increase in KP activity was prevented by PF-06840003. IDO1 inhibition also improved memory performance as assessed in the Barnes maze and anxiety behaviors as assessed in open field testing in the first 28 DPI. These results suggest increased KP activity after FPI may mediate neurological dysfunction, and IDO1 inhibition should be further investigated as a potential therapeutic target to improve recovery.


Subject(s)
Brain Injuries, Traumatic , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Rats, Sprague-Dawley , Animals , Male , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Rats , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Kynurenine/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Disease Models, Animal , Recovery of Function/drug effects , Tryptophan/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Maze Learning/drug effects
8.
Sci Rep ; 14(1): 12447, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38822039

ABSTRACT

The innate immune molecule NLR family CARD domain-containing 5 (NLRC5) plays a significant role in endometrial carcinoma (EC) immunosurveillance. However, NLRC5 also plays a protumor role in EC cells. Mismatch repair gene deficiency (dMMR) can enable tumors to grow faster and also can exhibit high sensitivity to immune checkpoint inhibitors. In this study, we attempted to determine whether NLRC5-mediated protumor role in EC is via the regulation of dMMR. Our findings revealed that NLRC5 promoted the proliferation, migration, and invasion abilities of EC cells and induced the dMMR status of EC in vivo and in vitro. Furthermore, the mechanism underlying NLRC5 regulated dMMR was also verified. We first found NLRC5 could suppress nuclear factor-kappaB (NF-κB) pathway in EC cells. Then we validated that the positive effect of NLRC5 in dMMR was restricted when NF-κB was activated by lipopolysaccharides in NLRC5-overexpression EC cell lines. In conclusion, our present study confirmed the novel NLRC5/NF-κB/MMR regulatory mechanism of the protumor effect of NLRC5 on EC cells, thereby suggesting that the NLRC5-mediated protumor in EC was depend on the function of MMR.


Subject(s)
Cell Proliferation , Endometrial Neoplasms , Intracellular Signaling Peptides and Proteins , NF-kappa B , Signal Transduction , Humans , Female , NF-kappa B/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Animals , Cell Movement/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Mice , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/metabolism , Neoplastic Syndromes, Hereditary/pathology , DNA Mismatch Repair , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Brain Neoplasms
9.
Front Microbiol ; 15: 1367297, 2024.
Article in English | MEDLINE | ID: mdl-38751722

ABSTRACT

This research aimed to address the issue of aflatoxin B1 (AFB1) contamination, which posed severe health and economic consequences. This study involved exploring unique species resources in the Qinghai-Tibet Plateau, screening strains capable of degrading AFB1. UPLC-Q-Orbitrap HRMS and NMR were employed to examine the degradation process and identify the structure of the degradation products. Results showed that Bacillus amyloliquefaciens YUAD7, isolated from yak dung in the Qinghai-Tibet Plateau, removed 91.7% of AFB1 from TSB-AFB1 medium with an AFB1 concentration of 10 µg/mL (72 h, 37°C, pH 6.8) and over 85% of AFB1 from real food samples at 10 µg/g (72 h, 37°C), exhibiting strong AFB1 degradation activity. Bacillus amyloliquefaciens YUAD7's extracellular secretions played a major role in AFB1 degradation mediated and could still degrade AFB1 by 43.16% after boiling for 20 min. Moreover, B. amyloliquefaciens YUAD7 demonstrated the capability to decompose AFB1 through processes such as hydrogenation, enzyme modification, and the elimination of the -CO group, resulting in the formation of smaller non-toxic molecules. Identified products include C12H14O4, C5H12N2O2, C10H14O2, C4H12N2O, with a structure consisting of dimethoxyphenyl and enoic acid, dimethyl-amino and ethyl carbamate, polyunsaturated fatty acid, and aminomethyl. The results indicated that B. amyloliquefaciens YUAD7 could be a potentially valuable strain for industrial-scale biodegradation of AFB1 and providing technical support and new perspectives for research on biodegradation products.

10.
Front Neurol ; 15: 1404492, 2024.
Article in English | MEDLINE | ID: mdl-38751879

ABSTRACT

Background: Cutaneous phosphorylated alpha-synuclein (p-α-syn) deposition is an important biomarker of idiopathic Parkinson's disease (iPD). Recent studies have reported synucleinopathies in patients with common genetic forms of PD. Objective: This study aimed to detect p-α-syn deposition characteristic in rare genetic PD patients with CHCHD2 or RAB39B mutations. Moreover, this study also aimed to describe peripheral alpha-synuclein prion-like activity in genetic PD patients, and acquire whether the cutaneous synucleinopathy characteristics of genetic PD are consistent with central neuropathologies. Methods: We performed four skin biopsy samples from the distal leg (DL) and proximal neck (C7) of 161 participants, including four patients with CHCHD2 mutations, two patients with RAB39B mutations, 16 patients with PRKN mutations, 14 patients with LRRK2 mutations, five patients with GBA mutations, 100 iPD patients, and 20 healthy controls. We detected cutaneous synucleinopathies using immunofluorescence staining and a seeding amplification assay (SAA). A systematic literature review was also conducted, involving 64 skin biopsies and 205 autopsies of genetic PD patients with synucleinopathy. Results: P-α-syn was deposited in the peripheral cutaneous nerves of PD patients with CHCHD2, LRRK2, or GBA mutations but not in those with RAB39B or PRKN mutations. There were no significant differences in the location or rate of α-syn-positive deposits between genetic PD and iPD patients. Peripheral cutaneous synucleinopathy appears to well represent brain synucleinopathy of genetic PD, especially autosomal dominant PD (AD-PD). Cutaneous α-synuclein SAA analysis of iPD and LRRK2 and GBA mutation patients revealed prion-like activity. Conclusion: P-α-syn deposition in peripheral cutaneous nerves, detected using SAA and immunofluorescence staining, may serve as an accurate biomarker for genetic PD and iPD in the future.

11.
Acta Pharmacol Sin ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789495

ABSTRACT

Paclitaxel (PTX) serves as a primary chemotherapy agent against diverse solid tumors including breast cancer, lung cancer, head and neck cancer and ovarian cancer, having severe adverse effects including PTX-induced peripheral neuropathy (PIPN) and hypersensitivity reactions (HSR). A recommended anti-allergic agent diphenhydramine (DIP) has been used to alleviate PTX-induced HSR. Desloratadine (DLT) is a third generation of histamine H1 receptor antagonist, but also acted as a selective antagonist of 5HTR2A. In this study we investigated whether DLT ameliorated PIPN-like symptoms in mice and the underlying mechanisms. PIPN was induced in male mice by injection of PTX (4 mg/kg, i.p.) every other day for 4 times. The mice exhibited 50% reduction in mechanical threshold, paw thermal response latency and paw cold response latency compared with control mice. PIPN mice were treated with DLT (10, 20 mg/kg, i.p.) 30 min before each PTX administration in the phase of establishing PIPN mice model and then administered daily for 4 weeks after the model was established. We showed that DLT administration dose-dependently elevated the mechanical, thermal and cold pain thresholds in PIPN mice, whereas administration of DIP (10 mg/kg, i.p.) had no ameliorative effects on PIPN-like symptoms. We found that the expression of 5HTR2A was selectively elevated in the activated spinal astrocytes of PIPN mice. Spinal cord-specific 5HTR2A knockdown by intrathecal injection of AAV9-5Htr2a-shRNA significantly alleviated the mechanical hyperalgesia, thermal and cold hypersensitivity in PIPN mice, while administration of DLT (20 mg/kg) did not further ameliorate PIPN-like symptoms. We demonstrated that DLT administration alleviated dorsal root ganglion neuronal damage and suppressed sciatic nerve destruction, spinal neuron apoptosis and neuroinflammation in the spinal cord of PIPN mice. Furthermore, we revealed that DLT administration suppressed astrocytic neuroinflammation via the 5HTR2A/c-Fos/NLRP3 pathway and blocked astrocyte-neuron crosstalk by targeting 5HTR2A. We conclude that spinal 5HTR2A inhibition holds promise as a therapeutic approach for PIPN and we emphasize the potential of DLT as a dual-functional agent in ameliorating PTX-induced both PIPN and HSR in chemotherapy. In summary, we determined that spinal 5HTR2A was selectively activated in PIPN mice and DLT could ameliorate the PTX-induced both PIPN- and HSR-like pathologies in mice. DLT alleviated the damages of DRG neurons and sciatic nerves, while restrained spinal neuronal apoptosis and CGRP release in PIPN mice. The underlying mechanisms were intensively investigated by assay against the PIPN mice with 5HTR2A-specific knockdown in the spinal cord by injection of adeno-associated virus 9 (AAV9)-5Htr2a-shRNA. DLT inhibited astrocytic NLRP3 inflammasome activation-mediated spinal neuronal damage through 5HTR2A/c-FOS pathway. Our findings have supported that spinal 5HTR2A inhibition shows promise as a therapeutic strategy for PIPN and highlighted the potential advantage of DLT as a dual-functional agent in preventing against PTX-induced both PIPN and HSR effects in anticancer chemotherapy.

12.
Biosensors (Basel) ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785726

ABSTRACT

Phosphodiesterases (PDEs), a superfamily of enzymes that hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are recognized as a therapeutic target for various diseases. However, the current screening methods for PDE inhibitors usually experience problems due to complex operations and/or high costs, which are not conducive to drug development in respect of this target. In this study, a new method for screening PDE inhibitors based on GloSensor technology was successfully established and applied, resulting in the discovery of several novel compounds of different structural types with PDE inhibitory activity. Compared with traditional screening methods, this method is low-cost, capable of dynamically detecting changes in substrate concentration in live cells, and can be used to preliminarily determine the type of PDEs affected by the detected active compounds, making it more suitable for high-throughput screening for PDE inhibitors.


Subject(s)
Phosphodiesterase Inhibitors , Phosphodiesterase Inhibitors/pharmacology , Humans , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/metabolism , High-Throughput Screening Assays , Biosensing Techniques , Cyclic GMP/metabolism , Drug Evaluation, Preclinical
14.
J Phys Chem Lett ; 15(19): 5130-5136, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38709226

ABSTRACT

Single-atom alloy (SAA) catalysts exhibit unique and excellent catalytic properties in heterogeneous hydrogenation/dehydrogenation reactions. A thorough understanding of the microscopic surface processes is essential to improve the catalytic performance. Here, from a new perspective of the temperature-programmed desorption (TPD) spectra of hydrogen (H) on two common SAA surfaces, Pt@Cu(111) and Pd@Cu(111), we reveal and confirm the key influence of H atoms attached to Pt/Pd dopants, i.e., the H atom bystander, on the desorption process of surface H atoms. It is found that only after considering the effect of the H atom bystander can the simulated TPD spectra well reproduce the experimentally observed higher desorption temperature on Pt@Cu(111) than on Pd@Cu(111) and the leftward shift of the TPD peak with increasing H atom coverage; otherwise, the features are inconsistent with experiments. Our work provides direct evidence for the effect of bystander H atoms from a simulation perspective.

15.
Commun Biol ; 7(1): 608, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769385

ABSTRACT

Diverse tumor metabolic phenotypes are influenced by the environment and genetic lesions. Whether these phenotypes extend to rhabdomyosarcoma (RMS) and how they might be leveraged to design new therapeutic approaches remains an open question. Thus, we utilized a Pax7Cre-ER-T2/+; NrasLSL-G12D/+; p53fl/fl (P7NP) murine model of sarcoma with mutations that most frequently occur in human embryonal RMS. To study metabolism, we infuse 13C-labeled glucose or glutamine into mice with sarcomas and show that sarcomas consume more glucose and glutamine than healthy muscle tissue. However, we reveal a marked shift from glucose consumption to glutamine metabolism after radiation therapy (RT). In addition, we show that inhibiting glutamine, either through genetic deletion of glutaminase (Gls1) or through pharmacological inhibition of glutaminase, leads to significant radiosensitization in vivo. This causes a significant increase in overall survival for mice with Gls1-deficient compared to Gls1-proficient sarcomas. Finally, Gls1-deficient sarcomas post-RT elevate levels of proteins involved in natural killer cell and interferon alpha/gamma responses, suggesting a possible role of innate immunity in the radiosensitization of Gls1-deficient sarcomas. Thus, our results indicate that glutamine contributes to radiation response in a mouse model of RMS.


Subject(s)
Glutaminase , Glutamine , Sarcoma , Animals , Glutamine/metabolism , Mice , Glutaminase/metabolism , Glutaminase/genetics , Glutaminase/antagonists & inhibitors , Sarcoma/metabolism , Sarcoma/radiotherapy , Sarcoma/genetics , Glucose/metabolism , Disease Models, Animal , Radiation Tolerance
16.
BMC Biol ; 22(1): 118, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769528

ABSTRACT

BACKGROUND: The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. RESULTS: In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. CONCLUSIONS: In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.


Subject(s)
Bombyx , Mechanoreceptors , Spermatogenesis , Animals , Spermatogenesis/physiology , Bombyx/physiology , Bombyx/genetics , Male , Mechanoreceptors/physiology , Mechanoreceptors/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Spermatozoa/physiology , Spermatozoa/metabolism
17.
Front Psychol ; 15: 1354810, 2024.
Article in English | MEDLINE | ID: mdl-38817836

ABSTRACT

Objective: This study endeavors to translate and psycho-metrically validate the metacognitive awareness inventory scale (MAS) for nursing students in China. Method: A total of 592 nursing students were enlisted from four universities situated in the eastern, southern, western, and northern regions of China. Content validity and reliability were evaluated using the content validity index and item-total correlation coefficient, and Cronbach's alpha coefficients, respectively. Convergent validity examined the goodness of fit among sub-scales through the average extracted variance and composite reliability. Results: Exploratory factor analysis confirmed the first-order and second-order factor models, contributing to a cumulative variance of 89.4 and 59.5%, respectively. The Cronbach's alpha values were 0.963 and 0.801, respectively. Confirmatory factor analysis outcomes indicated an excellent overall fit index for the model, satisfying the convergent validity criteria and achieving a target coefficient of 96.0%, which is consistent with the original scale structure. Conclusion: The Chinese version of the MAS (C-MAS) is a reliable and valid instrument for assessing metacognitive awareness among Chinese nursing students. Further research should consider a broader sample of nursing students across China to reinforce the scale's applicability.

18.
Biomed Pharmacother ; 175: 116755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772155

ABSTRACT

With the increasing prevalence of type 2 diabetes mellitus (T2DM), it has become critical to identify effective treatment strategies. In recent years, the novel oral hypoglycaemic drug Imeglimin has attracted much attention in the field of diabetes treatment. The mechanisms of its therapeutic action are complex and are not yet fully understood by current research. Current evidence suggests that pancreatic ß-cells, liver, and skeletal muscle are the main organs in which Imeglimin lowers blood glucose levels and that it acts mainly by targeting mitochondrial function, thereby inhibiting hepatic gluconeogenesis, enhancing insulin sensitivity, promoting pancreatic ß-cell function, and regulating energy metabolism. There is growing evidence that the drug also has a potentially volatile role in the treatment of diabetic complications, including metabolic cardiomyopathy, diabetic vasculopathy, and diabetic neuroinflammation. According to available clinical studies, its efficacy and safety profile are more evident than other hypoglycaemic agents, and it has synergistic effects when combined with other antidiabetic drugs, and also has potential in the treatment of T2DM-related complications. This review aims to shed light on the latest research progress in the treatment of T2DM with Imeglimin, thereby providing clinicians and researchers with the latest insights into Imeglimin as a viable option for the treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Mitochondria , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Animals , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Triazines/therapeutic use , Triazines/pharmacology
19.
Metabolomics ; 20(3): 53, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722395

ABSTRACT

INTRODUCTION: Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects. OBJECTIVES: To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations. METHODS: A dual extraction method involving 80% methanol followed by MTBE (methyl tert-butyl ether) extraction enables the analysis of free fatty acids, polar metabolites, and lipids. Extracts from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days were analyzed using HILIC chromatography coupled to Q Exactive Plus mass spectrometer or reversed-phase liquid chromatography coupled to MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility. RESULTS: Lipidomics analysis of 6 mouse tissues and plasma allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that (1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; (2) the impact on lysophosphatidylcholine (lysoPC) and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations; (3) increase of intestinal tricarboxylic acid (TCA) cycle intermediates after metformin treatment. CONCLUSION: The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).


Subject(s)
Lipid Metabolism , Lipidomics , Metformin , Metformin/pharmacology , Metformin/metabolism , Animals , Mice , Male , Lipidomics/methods , Lipid Metabolism/drug effects , Lipids/blood , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , Mice, Inbred C57BL , Tandem Mass Spectrometry/methods
20.
J Phys Chem B ; 128(22): 5500-5505, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776125

ABSTRACT

In polymer solar cells (PSCs), charge-transfer (CT) state absorption plays an important role in evaluating the CT-state energy and energy loss. However, due to the disordered nature of polymers, a comprehensive understanding of CT absorption properties remains elusive. Especially, the dominant role of dynamic and static disorder in determining CT absorption is frequently debated. Herein, we theoretically constructed an organic donor-acceptor model to investigate the impact of these two types of disorders on CT absorption properties. It is demonstrated that the CT absorption properties depend significantly on the type of disorder. Specifically, it is found that dynamic disorder has a more significant impact on the peak and position of CT absorption as well as the broadening properties, compared to static disorder. The study indicates that minimizing dynamic disorder can lead to a reduction in overall disorder, which is beneficial for improving the performance of PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...