Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.769
Filter
1.
Int J Biol Macromol ; : 132579, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795895

ABSTRACT

Cancer phototherapy has introduced a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.

2.
Histol Histopathol ; : 18758, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38785315

ABSTRACT

OBJECTIVES: The aim of our study was to examine the association of Angiomotin (Amot-p130) and Yes-associated protein 1 (YAP1) expressions and their prognostic significance in epithelial ovarian cancer (EOC). METHODS: A total of 100 primary EOC samples were obtained for immunohistochemical analysis of Amot-p130 and YAP1 expressions. Correlation analysis was performed between Amot-p130 or YAP1 and clinical factors. The overall survival time was calculated. RESULTS: Low Amot-p130 and high YAP1 nuclear expression were identified in 34 and 56 of 100 EOC tissues, respectively. Both low Amot-p130 and high YAP1 nuclear expression were associated with advanced tumor stage, high-grade carcinoma, and non-response to chemotherapy (p<0.05). They were also associated with shorter overall survival time (p<0.05) by log-rank test. A marker of low Amot-p130 and high YAP1 expression was associated with high-grade ovarian carcinoma, late-stage disease, non-response to chemotherapy, and shorter overall survival time (p<0.05). CONCLUSIONS: Low Amot-p130 and high YAP1 nuclear expression can provide additional prognostic information for patients with EOC. A marker of low Amot-p130 and high YAP1 expression may be a potent predictor of poor prognosis in patients with epithelial ovarian cancer.

3.
Mol Ther ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734903

ABSTRACT

Sepsis is a life-threatening process due to organ dysfunction resulting from severe infections. Mesenchymal stromal cells (MSCs) are being investigated as therapy for sepsis, along with conditioning regimens to improve their function. Carbon monoxide (CO) gas, which is cytoprotective at low doses, induces autophagy and is a mediator of inflammation. We evaluated CO-induced autophagy in human MSCs (hMSCs), and its impact on cell function in murine cecal ligation and puncture. Conditioning of hMSCs with CO ex vivo resulted in enhanced survival and bacterial clearance in vivo, and neutrophil phagocytosis of bacteria in vitro. Decreased neutrophil infiltration and less parenchymal cell death in organs were associated with increased macrophage efferocytosis of apoptotic neutrophils, promoting resolution of inflammation. These CO effects were lost when the cells were exposed to autophagy inhibition prior to gas exposure. When assessing paracrine actions of CO-induced autophagy, extracellular vesicles (EVs) were predominantly responsible. CO had no effect on EV production, but altered their miRNA cargo. Increased expression of miR-145-3p and miR-193a-3p by CO was blunted with disruption of autophagy, and inhibitors of these miRNAs led to a loss of neutrophil phagocytosis and macrophage efferocytosis. Collectively, CO-induced autophagy enhanced hMSC function during sepsis via paracrine actions of MSC-derived EVs.

4.
J Med Internet Res ; 26: e54363, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696251

ABSTRACT

BACKGROUND: Clinical notes contain contextualized information beyond structured data related to patients' past and current health status. OBJECTIVE: This study aimed to design a multimodal deep learning approach to improve the evaluation precision of hospital outcomes for heart failure (HF) using admission clinical notes and easily collected tabular data. METHODS: Data for the development and validation of the multimodal model were retrospectively derived from 3 open-access US databases, including the Medical Information Mart for Intensive Care III v1.4 (MIMIC-III) and MIMIC-IV v1.0, collected from a teaching hospital from 2001 to 2019, and the eICU Collaborative Research Database v1.2, collected from 208 hospitals from 2014 to 2015. The study cohorts consisted of all patients with critical HF. The clinical notes, including chief complaint, history of present illness, physical examination, medical history, and admission medication, as well as clinical variables recorded in electronic health records, were analyzed. We developed a deep learning mortality prediction model for in-hospital patients, which underwent complete internal, prospective, and external evaluation. The Integrated Gradients and SHapley Additive exPlanations (SHAP) methods were used to analyze the importance of risk factors. RESULTS: The study included 9989 (16.4%) patients in the development set, 2497 (14.1%) patients in the internal validation set, 1896 (18.3%) in the prospective validation set, and 7432 (15%) patients in the external validation set. The area under the receiver operating characteristic curve of the models was 0.838 (95% CI 0.827-0.851), 0.849 (95% CI 0.841-0.856), and 0.767 (95% CI 0.762-0.772), for the internal, prospective, and external validation sets, respectively. The area under the receiver operating characteristic curve of the multimodal model outperformed that of the unimodal models in all test sets, and tabular data contributed to higher discrimination. The medical history and physical examination were more useful than other factors in early assessments. CONCLUSIONS: The multimodal deep learning model for combining admission notes and clinical tabular data showed promising efficacy as a potentially novel method in evaluating the risk of mortality in patients with HF, providing more accurate and timely decision support.


Subject(s)
Deep Learning , Heart Failure , Humans , Heart Failure/mortality , Heart Failure/therapy , Male , Female , Prognosis , Aged , Retrospective Studies , Middle Aged , Electronic Health Records , Hospitalization/statistics & numerical data , Hospital Mortality , Aged, 80 and over
5.
Acta Biomater ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734282

ABSTRACT

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.

6.
J Pharm Biomed Anal ; 246: 116208, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38735210

ABSTRACT

Amomum tsaoko (AT) is commonly used in clinical practice to treat abdominal distension and pain. It is also a seasoning for cooking, with the functions of appetizing, invigorating the spleen, and being digestive-promoting. Amomum tsaoko (AT) has three adulterants, Amomum paratsaoko (AP), Amomum koenigii (AK), and Alpinia katsumadai Hayata, because of the confusion in historical classics regarding recorded sources as well as the near geographic distribution and fruit morphological similarities. In this study, we established a functional dyspepsia (FD) rat model and then treated it with the corresponding medicinal solutions AT, AP, AK, and AKH. The gastric emptying rate, intestinal propulsion rate, serum biochemical indicators, histopathological changes, and fecal metabolism were measured. The efficacy and mechanism of AT, AP, AK, and AKH in the treatment of FD were compared. Fecal metabolomics revealed that 20 potential biomarkers were involved in seven significant metabolic pathways in FD rats. These pathways include ubiquinone and other terpenoid-quinone biosynthesis, glycerophospholipid metabolism, tyrosine metabolism, primary bile acid biosynthesis, purine metabolism, folate biosynthesis, and amino sugar and nucleotide sugar metabolism. AP regulates 6 metabolic pathways, 5 metabolic pathways affected by AT, 4 metabolic pathways affected by AK, and 2 metabolic pathways affected by AKH.The above results suggest that the different effects of AT, AP, AK, and AKH on FD rats may be due to their different regulatory effects on the metabolome.

7.
Article in English | MEDLINE | ID: mdl-38725372

ABSTRACT

BACKGROUND: Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS: Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS: We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS: We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.

8.
J Mater Chem B ; 12(20): 4809-4823, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38695349

ABSTRACT

Tumor-associated macrophages (TAMs) are predominantly present in the tumor microenvironment (TME) and play a crucial role in shaping the efficacy of tumor immunotherapy. These TAMs primarily exhibit a tumor-promoting M2-like phenotype, which is associated with the suppression of immune responses and facilitation of tumor progression. Interestingly, recent research has highlighted the potential of repolarizing TAMs from an M2 to a pro-inflammatory M1 status-a shift that has shown promise in impeding tumor growth and enhancing immune responsiveness. This concept is particularly intriguing as it offers a new dimension to cancer therapy by targeting the tumor microenvironment, which is a significant departure from traditional approaches that focus solely on tumor cells. However, the clinical application of TAM-modulating agents is often challenged by issues such as insufficient tumor accumulation and off-target effects, limiting their effectiveness and safety. In this regard, nanomaterials have emerged as a novel solution. They serve a dual role: as delivery vehicles that can enhance the accumulation of therapeutic agents in the tumor site and as TAM-modulators. This dual functionality of nanomaterials is a significant advancement as it addresses the key limitations of current TAM-modulating strategies and opens up new avenues for more efficient and targeted therapies. This review provides a comprehensive overview of the latest mechanisms and strategies involving nanomaterials in modulating macrophage polarization within the TME. It delves into the intricate interactions between nanomaterials and macrophages, elucidating how these interactions can be exploited to drive macrophage polarization towards a phenotype that is more conducive to anti-tumor immunity. Additionally, the review explores the burgeoning field of TAM-associated nanomedicines in combination with tumor immunotherapy. This combination approach is particularly promising as it leverages the strengths of both nanomedicine and immunotherapy, potentially leading to synergistic effects in combating cancer.


Subject(s)
Immunotherapy , Nanostructures , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Immunotherapy/methods , Nanostructures/chemistry , Tumor Microenvironment/drug effects , Animals , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
9.
Med Eng Phys ; 128: 104171, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789216

ABSTRACT

Bradykinesia, a core symptom of motor disorders in Parkinson's disease (PD), is a major criterion for screening early PD patients in clinical practice. Currently, many studies have proposed automatic assessment schemes for bradykinesia in PD. However, existing schemes suffer from problems such as dependence on professional equipment, single evaluation tasks, difficulty in obtaining samples and low accuracy. This paper proposes a manual feature extraction- and neural network-based method to evaluate bradykinesia, effectively solving the problem of a small sample size. This method can automatically assess finger tapping (FT), hand movement (HM), toe tapping (TT) and bilateral foot sensitivity tasks (LA) through a unified model. Data were obtained from 120 individuals, including 93 patients with Parkinson's disease and 27 age- and sex-matched normal controls (NCs). Manual feature extraction and Attention Time Series Two-stream Networks (ATST-Net) were used for classification. Accuracy rates of 0.844, 0.819, 0.728, and 0.768 were achieved for FT, HM, TT, and LA, respectively. To our knowledge, this study is the first to simultaneously evaluate the upper and lower limbs using a unified model that has significant advantages in both model training and transfer learning.


Subject(s)
Lower Extremity , Neural Networks, Computer , Parkinson Disease , Upper Extremity , Humans , Parkinson Disease/physiopathology , Parkinson Disease/diagnosis , Lower Extremity/physiopathology , Male , Female , Upper Extremity/physiopathology , Middle Aged , Aged
10.
Sci Data ; 11(1): 535, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789452

ABSTRACT

Pulse oximeters measure peripheral arterial oxygen saturation (SpO2) noninvasively, while the gold standard (SaO2) involves arterial blood gas measurement. There are known racial and ethnic disparities in their performance. BOLD is a dataset that aims to underscore the importance of addressing biases in pulse oximetry accuracy, which disproportionately affect darker-skinned patients. The dataset was created by harmonizing three Electronic Health Record databases (MIMIC-III, MIMIC-IV, eICU-CRD) comprising Intensive Care Unit stays of US patients. Paired SpO2 and SaO2 measurements were time-aligned and combined with various other sociodemographic and parameters to provide a detailed representation of each patient. BOLD includes 49,099 paired measurements, within a 5-minute window and with oxygen saturation levels between 70-100%. Minority racial and ethnic groups account for ~25% of the data - a proportion seldom achieved in previous studies. The codebase is publicly available. Given the prevalent use of pulse oximeters in the hospital and at home, we hope that BOLD will be leveraged to develop debiasing algorithms that can result in more equitable healthcare solutions.


Subject(s)
Blood Gas Analysis , Oximetry , Humans , Oxygen Saturation , Intensive Care Units , Ethnicity , Oxygen/blood
11.
Front Immunol ; 15: 1376860, 2024.
Article in English | MEDLINE | ID: mdl-38799475

ABSTRACT

Introduction: Aeromonas hydrophila, a bacterium widely distributed in the natural environment, causes multiple diseases in various animals. Exploring the mechanism of the host defense against A. hydrophila can help develop efficient strategies against Aeromonas infection. Methods: Herein, we investigated the temporal influence of A. hydrophila on the Chinese soft-shelled turtle, an economically important species, at the biochemical, transcriptomic, and metabolomic levels. Plasma parameters were detected with the test kits. Transcriptome and metabolome were respectively applied to screen the differentially expressed genes and metabolites. Results: The contents or activities of these plasma parameters were significantly increased at 24 hpi and declined at 96 hpi, indicating that 24 and 96 hpi were two important time points during infection. Totals of 3121 and 274 differentially expressed genes (DEGs) from the transcriptome while 74 and 91 differentially abundant metabolites (DAMs) from the metabolome were detected at 24 and 96 hpi. The top DEGs at 24 hpi included Ccl2, Ccl3, Ccl4, Il1ß, Il6, Il7, Il15, Tnf, and Tnfr1 while Zap70, Cd3g, Cd8a, Itk, Pik3r3, Cd247, Malt1, and Cd4 were the most abundant at 96 hpi. The predominant DAMs included O-phospho-L-serine, γ-Aminobutyric acid, orotate, L-tyrosine, and L-tryptophan at 24 hpi, as well as L-glutamic acid, L-arginine, glutathione, glutathione disulfide, and citric acid at 96 hpi. Discussion: The combined analysis of DEGs and DAMs revealed that tryptophan metabolism, nicotinate and nicotinamide metabolism, as well as starch and sucrose metabolism, were the most important signaling pathways at the early infective stage while tyrosine metabolism, pyrimidine metabolism, as well as alanine, aspartate and glutamate metabolism were the most crucial pathways at the later stage. In general, our results indicated that the Chinese soft-shelled turtle displays stage-specific physiological responses to resist A. hydrophila infection.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Liver , Metabolome , Metabolomics , Signal Transduction , Transcriptome , Turtles , Animals , Turtles/microbiology , Turtles/immunology , Turtles/genetics , Aeromonas hydrophila/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Liver/metabolism , Gene Expression Profiling
12.
Article in English | MEDLINE | ID: mdl-38702154

ABSTRACT

Background: The objective of this study was to investigate the relationship between vascular calcification, serum lncRNA H19, and Runt-Related Transcription Factor 2 mRNA expression in patients with uremia. Methods: This study is a retrospective study which recruited 146 patients with uremia on dialysis from December 2021 to November 2022. Participants were divided into the VC and non-VC groups based on their chest X-ray calcification ratings. General and clinical data were collected from all patients. Serum H19, Runx2 mRNA, mineral bone disease effectors, and other blood markers were tested. Univariate analysis was performed to compare the changes in each clinical index between these two groups of patients. A multi-factor logistic regression analysis of risk factors for VC was performed. Receiver operating characteristics analyzed the H19 and Runx2 for their diagnostic values for VC. Pearson's test was used to analyze the correlation between the H19 and Runx2 expression and the factors influencing VC. Results: Patients in the VC group had significantly higher creatinine, serum phosphorus, calcium, BMP-2, FGF-23, OPG, and iPTH levels than those in the non-VC group (P < .05), while their albumin levels were significantly lower than those in the non-VC group (P < .05). The expression of H19 and Runx2 mRNA was significantly upregulated in the serum of VC patients (P < .05). H19 was significantly positively correlated with creatinine, serum phosphorus, calcium, BMP-2, OPG, and iPTH (P < .05). Runx2 mRNA was significantly positively correlated with creatinine, FGF-23, and iPTH (P < .05 ), while there was no significant correlation with other factors(P > .05). Albumin, BMP-2, iPTH, H19, and Runx2 were independent correlative-factors of uremic VC. In addition, the combined H19 and Runx2 test (AUC=0.850; 95% CI: 0.781-0.903) had good diagnostic values for the development of VC. Conclusion: Serum H19 and Runx2 levels are significantly associated with VC-related factors and are independent risk factors for uremic VC, and their levels contribute to the diagnosis of uremic VC.

13.
Haematologica ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695123

ABSTRACT

Early molecular response (EMR) at 3 months is predictive of improved overall survival (OS) and progression-free survival (PFS) in patients with chronic myeloid leukemia in the chronic phase (CML-CP). Although about one-third of patients treated with first-line imatinib do not achieve EMR, long-term OS and PFS are still observed in most patients. DASCERN (NCT01593254) is a prospective, phase IIb, randomized trial evaluating a switch to dasatinib in patients who have not achieved EMR after 3 months of treatment with first-line imatinib. Early analysis demonstrated an improved major molecular response (MMR) rate at 12 months with dasatinib versus imatinib (29% vs. 13%, P=0.005). Here, we report results from the final 5-year follow-up. In total, 174 patients were randomized to dasatinib and 86 to remain on imatinib. Forty-six (53%) patients who remained on imatinib but subsequently experienced failure were allowed to cross over to dasatinib per protocol. At a minimum follow-up of 60 months, the cumulative MMR rate was significantly higher in patients randomized to dasatinib versus imatinib (77% vs. 44%, P.

14.
Int J Ophthalmol ; 17(5): 861-868, 2024.
Article in English | MEDLINE | ID: mdl-38766350

ABSTRACT

AIM: To investigate macular microperimetry in patients with early primary open angle glaucoma (POAG) using a new custom-made pattern, and analyze the characteristics of macular sensitivity. METHODS: This case-control study included 38 patients with POAG, who were divided into pre-perimetric glaucoma (18 eyes of 18 patients), early-stage (20 eyes of 20 patients), and control (20 eyes of 20 patients) groups. All subjects underwent standard 24-2 humphrey visual field test. An MP-3 microperimeter with a new custom-made pattern (28 testing points distributed in four quadrants, covering the central 10° of the retina) was used to evaluate macular sensitivity. Ganglion cell complex (GCC) thicknesses were examined using an RS-3000 Advance OCT system. The features of structure and function were analysed per quadrant. RESULTS: The pre-perimetric glaucoma group had significantly lower inferior hemifield macular sensitivity compared to controls (P<0.05). The early-stage POAG group had significantly lower average, inferior hemifield, inferonasal, and inferotemporal mean sensitivities compared to the pre-perimetric glaucoma group (P<0.05), and lower macular sensitivity in all sectors compared to controls (P<0.05). Regarding GCC thickness, all sectors in the early-stage POAG group became thinner compared to those in controls (P<0.05); whereas all sectors in the early-stage POAG group, except the superonasal quadrant, became thinner compared to those in the pre-perimetric glaucoma group (P<0.05). Macular sensitivity and GCC thickness were significantly associated in each sector. The inferotemporal quadrant had the highest correlation coefficients (0.840). The structure-function relationship for the inferonasal and inferotemporal sectors was stronger compared to the corresponding superior sectors. CONCLUSION: Microperimetry reveals variations in macular sensitivity in patients with early glaucoma earlier than conventional perimetry, particularly in pre-perimetric glaucoma cases in which it might be undetectable by conventional methods. The new custom-made pattern may improve the accuracy of microperimetry by enhancing point arrangement and reducing fatigue effects. Macular sensitivity measured by MP-3 with this pattern shows statistically significant structural and functional associations with the thicknesses of the GCC.

15.
Plant J ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743909

ABSTRACT

Low temperature (LT) greatly restricts grain filling in maize (Zea mays L.), but the relevant molecular mechanisms are not fully understood. To better understand the effect of LT on grain development, 17 hybrids were subjected to LT stress in field trials over 3 years, and two hybrids of them with contrasting LT responses were exposed to 30/20°C and 20/10°C for 7 days during grain filling in a greenhouse. At LT, thousand-kernel weight declined, especially in LT-sensitive hybrid FM985, while grain-filling rate was on average about 48% higher in LT-tolerant hybrid DK159 than FM985. LT reduced starch synthesis in kernel mainly by suppression of transcript levels and enzyme activities for sucrose synthase and hexokinase. Brassinolide (BR) was abundant in DK159 kernel, and genes involved in BR and cytokinin signals were inducible by stress. LT downregulated the genes in light-harvesting complex and photosystem I/II subunits, accompanied by reduced photosynthetic rate and Fv/Fm in ear leaf. The LT-tolerant hybrid could maintain a high soluble sugar content and fast interconversion between sucrose and hexose in the stem internode and cob, improving assimilate allocation to kernel at LT stress and paving the way for simultaneous growth and LT stress responses.

16.
Food Chem ; 452: 139589, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38744130

ABSTRACT

The exopolysaccharide production from blueberry juice fermented were investigated. The highest exopolysaccharide yield of 2.2 ± 0.1 g/L (increase by 32.5 %) was reached under the conditions of temperature 26.5 °C, pH 5.5, inoculated quantity 5.4 %, and glucose addition 9.1 % using the artificial neural network and genetic algorithm. Under the optimal conditions, the viable cell counts and total acids were increased by 2.0 log CFU/mL and 1.6 times, respectively, while the content of phenolics and anthocyanin was decreased by 9.26 % and 7.86 %, respectively. The changes of these components affected the exopolysaccharide biosynthesis. The absorption bands of -OH and -CH associated with the main functional groups of exopolysaccharide were detected by Visible near-infrared spectroscopy. The prediction model based on spectrum results was constructed. Competitive adaptive reweighted sampling and the random forest were used to enhance the model's prediction performance with the value of RC = 0.936 and RP = 0.835, indicating a good predictability of exopolysaccharides content during fermentation.

17.
Polymers (Basel) ; 16(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38674994

ABSTRACT

The epoxy foam material filled with an absorbing agent effectively absorbs electromagnetic waves. In this study, epoxy resin was used as the matrix, and acetylene carbon black was used as the magnetic absorbing agent to prepare an absorbing foam material (epoxy/CB). The microstructure of acetylene carbon black (CB) and its distribution in epoxy resin, as well as the effects of pre-polymerization time and CB content on the foam structure, were systematically characterized. Additionally, two dispersion methods, the hot-melt in situ stirring dispersion method and the three-roll milling dispersion method, were studied for their effects on the foaming process and absorbing properties of epoxy/CB. The results showed that with the prolongation of pre-polymerization time, the pore size decreased from 1.02 mm to 0.4 mm, leading to a more uniform pore distribution. Compared to the hot-melt in situ stirring dispersion method, the three-roll milling dispersion method effectively improved the dispersion of CB in epoxy resin, reducing the aggregate size from 300-400 nm to 70-80 nm. The pore diameter also decreased from 0.453 mm to 0.311 mm, improving the uniformity of particle size distribution. However, the absorbing material prepared with the three-roll milling dispersion method exhibited unsatisfactory absorption performance, with values close to 0 dB at mid-low frequencies and around -1 dB at high frequencies. In contrast, the absorbing material prepared with the hot-melt in situ stirring dispersion method showed better absorption performance at high frequencies, reaching around -9 dB.

18.
BMC Womens Health ; 24(1): 252, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654192

ABSTRACT

BACKGROUND: To evaluate the efficacy of modified uterine stent in the treatment of mild-to-moderate intrauterine adhesions and explore the relative indicators affecting prognosis prediction. METHODS: A total of 115 patients with mild-to-moderate intrauterine adhesions received a modified uterine stent placement after hysteroscopy adhesiolysis. The second-look hysteroscopy operated after 3 months surgery, and the third-look hysteroscopy operated after 6 months surgery if necessary. The stent was removed when the cavity shape was repaired, then the reproductive outcomes were followed up one year. RESULTS: Menstrual blood volume, endometrial thickness and volume had increased significantly after 3 months surgery. The rates of cavity repaired were 86.96% (100/115) after 3 months surgery and 100% (115/115) after 6 months surgery cumulatively. Endometrial thickness after 3-months surgery was positively associated with uterine cavity shape repaired (P<0.01). The receive operating characteristic (ROC) curve showed the rate of uterine cavity shape repaired predicted by the model was 0.92, based on the endometrial thickness after 3-months surgery. The rate of pregnancy was 86.09% (99/115) in one year, while the rate of miscarriage accounted for 26.26% (26/99). The median time interval between stent removal and subsequent conception was 3 months. It showed adhesion recurrence was the risk factor for subsequent pregnancy (P<0.01). CONCLUSIONS: A modified uterine stent placement under hysteroscopy was an effective approach for mild-to-moderate intrauterine adhesions, which is easy to operate and worthy for clinical promotion. Endometrial thickness measured by ultrasonography probably has predictive value in adhesion recurrence and subsequent pregnancy. TRIAL REGISTRATION: ChiCTR2100051524. Date of registration (retrospectively registered): 26/09/2021.


Subject(s)
Hysteroscopy , Stents , Uterine Diseases , Humans , Female , Tissue Adhesions/surgery , Adult , Hysteroscopy/methods , Uterine Diseases/surgery , Pregnancy , Uterus/surgery , Treatment Outcome , Pregnancy Rate , Endometrium/surgery
19.
J Fungi (Basel) ; 10(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38667909

ABSTRACT

APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) family transcription factors play crucial roles in various biological processes of fungi, however, their functional characterization in phytopathogenic fungi is limited. In this study, we explored the role of SsStuA, a typical APSES transcription factor, in the regulation of cell wall integrity (CWI), sclerotia formation and pathogenicity of Sclerotinia sclerotiorum, which is a globally important plant pathogenic fungus. A deficiency of SsStuA led to abnormal phosphorylation level of SsSmk3, the key gene SsAGM1 for UDP-GlcNAc synthesis was unable to respond to cell wall stress, and decreased tolerance to tebuconazole. In addition, ΔSsStuA was unable to form sclerotia but produced more compound appressoria. Nevertheless, the virulence of ΔSsStuA was significantly reduced due to the deficiency of the invasive hyphal growth and increased susceptibility to hydrogen peroxide. We also revealed that SsStuA could bind to the promoter of catalase family genes which regulate the expression of catalase genes. Furthermore, the level of reactive oxygen species (ROS) accumulation was found to be increased in ΔSsStuA. In summary, SsStuA, as a core transcription factor involved in the CWI pathway and ROS response, is required for vegetative growth, sclerotia formation, fungicide tolerance and the full virulence of S. sclerotiorum.

SELECTION OF CITATIONS
SEARCH DETAIL
...