Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Clin Transl Hepatol ; 12(5): 443-456, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38779516

ABSTRACT

Background and Aims: Hepatitis B virus (HBV) infection is a major risk factor for cirrhosis and liver cancer, and its treatment continues to be difficult. We previously demonstrated that a dopamine analog inhibited the packaging of pregenomic RNA into capsids. The present study aimed to determine the effect of dopamine on the expressions of hepatitis B virus surface and e antigens (HBsAg and HBeAg, respectively) and to elucidate the underlying mechanism. Methods: We used dopamine-treated HBV-infected HepG2.2.15 and NTCP-G2 cells to monitor HBsAg and HBeAg expression levels. We analyzed interferon-stimulated gene 15 (ISG15) expression in dopamine-treated cells. We knocked down ISG15 and then monitored HBsAg and HBeAg expression levels. We analyzed the expression of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway factors in dopamine-treated cells. We used dopamine hydrochloride-treated adeno-associated virus/HBV-infected mouse model to evaluate HBV DNA, HBsAg, and HBeAg expression. HBV virus was collected from HepAD38.7 cell culture medium. Results: Dopamine inhibited HBsAg and HBeAg expression and upregulated ISG15 expression in HepG2.2.15 and HepG2-NTCP cell lines. ISG15 knockdown increased HBsAg and HBeAg expression in HepG2.2.15 cells. Dopamine-treated cells activated the JAK/STAT pathway, which upregulated ISG15 expression. In the adeno-associated virus-HBV murine infection model, dopamine downregulated HBsAg and HBeAg expression and activated the JAK-STAT/ISG15 axis. Conclusions: Dopamine inhibits the expression of HBsAg and HBeAg by activating the JAK/STAT pathway and upregulating ISG15 expression.

2.
Parasit Vectors ; 17(1): 214, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730303

ABSTRACT

BACKGROUND: Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS: The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS: Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS: Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.


Subject(s)
Insect Vectors , Phylogeny , RNA, Ribosomal, 18S , Triatoma , Trypanosoma , Animals , China/epidemiology , Rats , Mice , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Triatoma/parasitology , RNA, Ribosomal, 18S/genetics , Insect Vectors/parasitology , Trypanosomiasis/parasitology , Trypanosomiasis/transmission , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Feces/parasitology , HSP70 Heat-Shock Proteins/genetics , DNA, Protozoan/genetics , Female , Male
3.
J Hazard Mater ; 469: 133979, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492396

ABSTRACT

Riverine mercury (Hg) is mainly transported to coastal areas in suspended particulate matter (SPM)-bound form, posing a potential threat to human health. Water discharge and SPM characteristics in rivers vary naturally with seasonality and can also be arbitrarily disrupted by anthropogenic regulation events, but their effects on Hg transport remain unresolved. Aiming to understand the confounding effects of seasonality and anthropogenic river regulation on Hg and SPM transport, this study selected the highly sediment-laden Yellow River as a representative conduit. Significant variations in SPM concentrations (108 - 7097 mg/L) resulted in fluctuations in total mercury (THg, 3.79 - 111 ng/L) in river water corresponding to seasonality and anthropogenic water/sediment regulation. Principal component analysis and structural equation model revealed that SPM was the essential factor controlling THg and particulate Hg (PHg) in river water. While SPM exhibited equilibrium state in the dry season, a net resuspension during the anthropogenic regulation and net deposition in the wet season demonstrated the impact of SPM dynamics on Hg distribution and transport to coastal regions. Combining water discharge, SPM, and Hg concentrations, a modified model was developed to quantify Hg flux (2256 kg), over 98% of which was in particulate phase.


Subject(s)
Mercury , Water Pollutants, Chemical , Humans , Rivers/chemistry , Particulate Matter/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Mercury/analysis , Water/analysis , Dust/analysis , Oceans and Seas , Geologic Sediments/analysis
4.
Sci Rep ; 14(1): 880, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195704

ABSTRACT

Genotyping of gDNA rs12041331 (PEAR1), rs6065 (GP1BA), and rs730012 (LTC4S) can provide systematic guidance on the use of aspirin. However, an accurate, reliable and economical approach to simultaneous detection of the above single nucleotide polymorphisms (SNPs) is not reported. Herein, we designed and substantiated an allele-specific (AS) forward primer-superposed amplification analysis for measurement of the SNPs in PEAR1, GP1BA and LTC4S genes, in which the values of ∆Cq (differences in threshold cycles between the wild-type forward primer-based assay and the mutated-type forward primer-based assay) were employed to decide genotype. Mismatch AS forward primers were screened with the singleplex amplification analysis. Moreover, Cq extension optimized by AS forward primer superposition was observed in the selected forward primer-based triplex analysis. Further, robustness assessment of the triplex analysis showed the amplification efficiency ranging from 0.9 to 1.1. Precision test demonstrated the coefficient of variation of less than 2%. And the detective results of 189 DNA samples was completely concordant with that of commercial Sanger sequencing. In summary, we developed a simple, accurate and economical approach to genotyping of rs12041331 (PEAR1), rs6065 (GP1BA) and rs730012 (LTC4S) to provide a valuable pharmacogenomics tool for guidance of aspirin delivery.


Subject(s)
Aspirin , Pharmacogenetics , Alleles , Genotype , Biological Assay
5.
J AOAC Int ; 107(1): 158-163, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37531289

ABSTRACT

BACKGROUND: Dendrobium huoshanense (DHS) is a classic traditional Chinese medicine (TCM) with distinctive medicinal benefits and great economic worth; nevertheless, because of similar tastes and looks, it is simple to adulterate with less expensive substitutes (such as Dendrobium henanense [DHN]). OBJECTIVE: This work aimed to develop a reliable tool to detect and quantify the adulteration of DHS with DHN by using UV-Vis-shortwave near-infrared diffuse reflectance spectroscopy (UV-Vis-SWNIR DRS) combined with chemometrics. METHODS: Adulterated samples prepared in varying concentrations (0-100%, w/w) were analyzed with UV-Vis-SWNIR DRS methods. Partial least-square-discriminant analysis (PLS-DA) and partial least-squares (PLS) regression techniques were used for the differentiation of adulterated DHN from pure DHS and the prediction of adulteration levels. RESULTS: The PLS-DA classification models successfully differentiated adulterated and nonadulterated DHS with an over 100% correct classification rate. UV-Vis-SWNIR DRS data were also successfully used to predict adulteration levels with a high coefficient of determination for calibration (0.9924) and prediction (0.9906) models and low error values for calibration (3.863%) and prediction (5.067%). CONCLUSION: UV-Vis-SWNIR DRS, as a fast and environmentally friendly tool, has great potential for both the identification and quantification of adulteration practices involving herbal medicines and foods. HIGHLIGHTS: UV-Vis-SWNIR DRS combined with chemometrics can be applied to identify and quantify the adulteration of herbal medicines and foods.


Subject(s)
Dendrobium , Chemometrics , Spectroscopy, Near-Infrared/methods , Discriminant Analysis , Least-Squares Analysis , Plant Extracts , Food Contamination/analysis
6.
RSC Adv ; 13(28): 19455-19463, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37383692

ABSTRACT

A rapid pressurized capillary electrochromatography (pCEC) method has been established for the simultaneous analysis of 11 phenols in the four main original plants of the famous traditional Chinese medicine (TCM) Shihu. The effects of wavelength, mobile phase, flow rate, pH value, concentration of buffer, and applied voltage were systematically studied. The investigated 11 phenols could be isolated in 35 min on a reversed-phase EP-100-20/45-3-C18 capillary column using the established method. To apply the established pCEC method, all phenols except tristin (11) were detected in the four Dendrobium plants. A total of 10 components were detected in D. huoshanense, 6 components in D. nobile, 3 components in D. chrysotoxum, and 4 components in D. fimbriatum. The consistent evaluation revealed that the similarities among the four original plants of Shihu were 38.2-86.0% based on the 11 polyphenols and 92.5-97.7% based on the pCEC fingerprints. These further suggested that the components of the four original plants of TCM Shihu might be significantly different. Further investigation should be conducted to confirm and evaluate if the four species could be used as the same medicine with the same amount according to Chinese Pharmacopoeia (ChP).

7.
J Hazard Mater ; 455: 131597, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37182462

ABSTRACT

Riverine mercury (Hg) is the largest global source of Hg in coastal oceans. The Yellow River delivers the majority of Hg to the semi-enclosed Bohai Sea, where Hg contamination adversely affects the surrounding heavily populated provinces in northern China. Mercury distribution patterns in the river-estuary interacting area provides essential information to understand the riverine Hg transport and biogeochemical cycling of Hg in the estuary. Analyzing the spatial distributions of total- (THg) and methyl-Hg (MeHg) in the lower end of Yellow River (∼105 km) and adjacent estuary, we found the dominant role of suspended particulate matter (SPM) in Hg transport, with 99.1% and 86.3% of THg and MeHg being in particulate phase. The SPM dynamics, such as transport, retention, sorting and sedimentation, governs Hg transport with water flow and particle-water partition of Hg. While THg decreased along the water flow to the river mouth with the settlement of particulate THg (about 27.5% onto the riverbed and the rest entering the sea), MeHg and particulate MeHg increased by 110% and 117%, respectively. This study highlights the distinct patterns in THg and MeHg distribution and transport and suggests potential Hg methylation and external MeHg input in the river-estuary mixed zone.

8.
Appl Opt ; 61(13): 3511-3515, 2022 May 01.
Article in English | MEDLINE | ID: mdl-36256387

ABSTRACT

This paper systematically establishes a range resolution model for 3D gated range-intensity correlation imaging (GRICI) based on the law of error propagation and statistical theory, and especially takes the high-repetition frequency characteristic of 3D GRICI into consideration. The model can theoretically guide the setting of the GRICI system parameters to obtain a higher range resolution compared with existing modeling methods. This paper also verifies the correctness of the proposed model through simulation and experiments, and quantitatively analyzes the influence of the accumulated pulse number in a single frame. In addition, the range resolution for our 3D GRICI system is measured under the guidance of the proposed model, and it reaches the millimeter order.

9.
iScience ; 25(7): 104597, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35789846

ABSTRACT

Liver fibrosis is a severe stage of nonalcoholic fatty liver disease (NAFLD), which is closely associated with the activation of hepatic stellate cells (HSCs) and their interaction with macrophages. Exosomes can mediate crosstalk between macrophages and HSCs in NAFLD-associated fibrosis. We found that M2 macrophage-derived exosomes significantly inhibit HSCs activation. RNA-seq studies revealed that miRNA-411-5p was decreased in serum exosomes of nonalcoholic steatohepatitis (NASH) patients as compared with that in healthy controls. Besides, miR-411-5p and M2 macrophage markers are decreased in the liver of the NASH model. We further proved that exosomal miR-411-5p from M2 macrophages inhibit HSCs activation and miR-411-5p directly downregulated the expression of Calmodulin-Regulated Spectrin-Associated Protein 1 (CAMSAP1) to inactivate stellate cells. Importantly, knockdown of CAMSAP1 also inhibited HSCs activation. This study contributes to understanding the underlying mechanism of HSCs activation and indicates CAMSAP1 may serve as a potential therapeutic target for NASH.

10.
Aging Cell ; 21(5): e13601, 2022 05.
Article in English | MEDLINE | ID: mdl-35366382

ABSTRACT

Alzheimer's disease (AD) is age-related progressive neurological dysfunction. Limited clinical benefits for current treatments indicate an urgent need for novel therapeutic strategies. Previous transcriptomic analysis showed that DMP1 expression level was increased in AD model animals whereas it can induce cell-cycle arrest in several cell lines. However, whether the cell-cycle arrest of neural progenitor cell induced by DMP1 affects cognitive function in Alzheimer-like mice still remains unknown. The objective of our study is to explore the issue. We found that DMP1 is correlated with cognitive function based on the clinical genomic analysis of ADNI database. The negative role of DMP1 on neural progenitor cell (NPC) proliferation was revealed by silencing and overexpressing DMP1 in vitro. Furthermore, silencing DMP1 could increase the number of NPCs and improve cognitive function in Alzheimer-like mice, through decreasing P53 and P21 levels, which suggested that DMP1-induced cell-cycle arrest could influence cognitive function.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neural Stem Cells , Alzheimer Disease/metabolism , Animals , Cell Proliferation/genetics , Cognition , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Extracellular Matrix Proteins/metabolism , Mice , Neural Stem Cells/metabolism
11.
Biomolecules ; 11(12)2021 11 27.
Article in English | MEDLINE | ID: mdl-34944423

ABSTRACT

Emerging evidence shows that mitochondria fusion/fission imbalance is related to the occurrence of hyperglycemia-induced vascular injury. To study the temporal dynamics of mitochondrial fusion and fission, we observed the alteration of mitochondrial fusion/fission proteins in a set of different high-glucose exposure durations, especially in the early stage of hyperglycemia. The in vitro results show that persistent cellular apoptosis and endothelial dysfunction can be induced rapidly within 12 hours' high-glucose pre-incubation. Our results show that mitochondria maintain normal morphology and function within 4 hours' high-glucose pre-incubation; with the extended high-glucose exposure, there is a transition to progressive fragmentation; once severe mitochondria fusion/fission imbalance occurs, persistent cellular apoptosis will develop. In vitro and in vivo results consistently suggest that mitochondrial fusion/fission homeostasis alterations trigger high-glucose-induced vascular injury. As the guardian of mitochondria, AMPK is suppressed in response to hyperglycemia, resulting in imbalanced mitochondrial fusion/fission, which can be reversed by AMPK stimulation. Our results suggest that mitochondrial fusion/fission's staged homeostasis may be a predictive factor of diabetic cardiovascular complications.


Subject(s)
Diabetes Mellitus, Experimental/complications , Glucose/adverse effects , Mitochondria/metabolism , Vascular System Injuries/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondrial Dynamics , Vascular System Injuries/etiology
12.
Iran J Pharm Res ; 20(3): 13-19, 2021.
Article in English | MEDLINE | ID: mdl-34903965

ABSTRACT

Dendrobium huoshanense (DHS) has long been used to make tea drink, soup, and porridge to protect eye and liver in many Southeast Asian countries for centuries. As a rare and endangered functional food, adulteration in DHS with visually similar but cheaper and more accessible plants such as Dendrobium henanense (DHN) because of their similarities in morphology has become prevalent in the market. In this study, the Attenuated Total Reflectance Fourier transform Infrared Spectroscopy (ATR-FTIR) combined with chemometric methods was established to detect fraudulent addition in DHS with DHN. The partial least squares (PLS) models based on the ATR-FTIR files of DHS mixed with different proportions of DHN were built under cross validation and tested with different independent data sets. To reduce the variables' lack of information and increase the accuracy of the model, different wavelength selection methods including Moving Window Partial Least Squares (MW-PLS), Monte Carlo-uninformative variable elimination (MC-UVE), and interval random frog (iRF) were compared.The results showed that iRF performed the most perfectly with the number of latent variables (nLVs = 7), the lowest Root Mean Square Error of Cross-Validation (RMSECV = 7.37), and the maximum determination coefficients (R2 = 0.9721). The excellent performance of the model was proved by the low RMSEP value of 6.44% and the high R2 value of 0.9556. The developed method could rapidly quantify the adulteration DHN in DHS, and our study might provide an efficient and great potential technique tool for the rapid, green, low-cost, and nondestructive identification and quantification for DHS adulterated with DHN.

13.
Cancer Manag Res ; 13: 8915-8928, 2021.
Article in English | MEDLINE | ID: mdl-34876854

ABSTRACT

OBJECTIVE: The treatment plans designed with the guidance of the mathematical model and adaptive strategy can trap tumor subpopulations in a periodic and controllable loop. But this process requires detailed information about the tumor system, which is difficult to obtain. Therefore, we wondered whether the fixed periodic treatment plans designed with the typical values of population parameters could be applied to a similar tumor system without complete information. METHODS: A binary tumor system constructed by an EGFR-mutant and a KRAS-mutant cell line was used to explore the applicability of the fixed periodic treatment plans. The dynamics of this system were described by combining the Lotka-Volterra model with the framework of the nonlinear mixed-effects model. The typical values of population parameters were used to design the plans, and the robust plans were screened through parameter variation. These screened plans were examined their applicability in animal experiments and simulations. RESULTS: In animal experiments where system parameters vary from -30% to 30%, the "osimertinib administration, withdrawal, FK866 administration and withdrawal" plan can trap subpopulations of the system in periodic cycles. In simulation, when there was an unknown resistant subpopulation, the screened fixed periodic treatment plans can still delay the evolution of resistance. The median outcomes of screened plans were better than conventional sequential treatment in most cases. There was no significant difference between the outcomes of the screened plan with median stability and the optimal therapy. The evolutionary trajectories of these two plans were similar. CONCLUSION: According to the results, these fixed periodic plans should be tried in treatment even the information of the tumor system was incomplete.

14.
Front Nutr ; 8: 771078, 2021.
Article in English | MEDLINE | ID: mdl-34805252

ABSTRACT

The interchangeable use of different herbs to prepare the same formulation is a common practice in Traditional Chinese Medicine (TCM). However, this practice would require the component herbs to share similar compositions, at least in terms of the bioactive agents, to ensure they can replace each other in drug preparation. In this study, we developed an effective and comprehensive high-performance liquid chromatography-diode array detector (HPLC-DAD) method for simultaneous analysis of 11 phenolic compounds in the methanol extracts of Dendrobium huoshanense, Dendrobium nobile (D. nobile), Dendrobium chrysotoxum (D. chrysotoxum), and Dendrobium fimbriatum (D. fimbriatum), which have been identified as interchangeable ingredients for the same TCM preparation "Shihu" in the Chinese pharmacopeia (ChP). The consistency of the four Dendrobium species was evaluated on the basis of the presence of the 11 investigated compounds and the HPLC fingerprints of the methanol extracts of the plants. When gradient elution was performed with a solvent system of acetonitrile and water on a Zorbax Eclipse XDB-C18 (150 mm × 4.6 mm, 5 µm) with monitoring at 220 nm, all 11 investigated compounds were isolated at the baseline. The established HPLC method showed excellent linearity (all analytical curves showed relative coefficients [R2] > 0.999), sensitivity, precision (relative standard deviation [RSD] < 2%), and accuracy (recovery, 90.65-99.17%). These findings confirmed that the method we constructed was reliable. Quantification analysis showed significant differences in the contents of the investigated polyphenols in the four Dendrobium species. Evaluations of consistency revealed that the similarities among the four species were 0.299-0.906 in assessments based on the 11 polyphenols and 0.685-0.968 in assessments based on HPLC fingerprints. Thus, the components of the four Dendrobium species may be significantly different, and more experiments are required to determine whether they can be used interchangeably in the same amounts for preparing the formulation according to ChP.

15.
Cancers (Basel) ; 13(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34771426

ABSTRACT

Adaptive therapy exploits the self-organization of tumor cells to delay the outgrowth of resistant subpopulations successfully. When the tumor has aggressive resistant subpopulations, the outcome of adaptive therapy was not superior to maximum tolerated dose therapy (MTD). To explore methods to improve the adaptive therapy's performance of this case, the tumor system was constructed by osimertinib-sensitive and resistant cell lines and illustrated by the Lotka-Volterra model in this study. Restore index proposed to assess the system reachability can predict the duration of each treatment cycle. Then the threshold of the restore index was estimated to evaluate the timing of interrupting the treatment cycle and switching to high-frequency administration. The introduced reachability-based adaptive therapy and classic adaptive therapy were compared through simulation and animal experiments. The results suggested that reachability-based adaptive therapy showed advantages when the tumor has an aggressive resistant subpopulation. This study provides a feasible method for evaluating whether to continue the adaptive therapy treatment cycle or switch to high-frequency administration. This method improves the gain of adaptive therapy by taking into account the benefits of tumor intra-competition and the tumor control of killing sensitive subpopulation.

16.
Clin Ther ; 43(12): 2088-2103, 2021 12.
Article in English | MEDLINE | ID: mdl-34782163

ABSTRACT

PURPOSE: The identification of optimal drug administration schedules to overcome the emergence of resistance that causes treatment failure is a major challenge in cancer research. We report the outcomes of a computational strategy to assess the dynamics of tumor progression as a function of time under different treatment regimens. METHODS: We developed an evolutionary game theory model that combined Lotka-Volterra equations and pharmacokinetic properties with 2 competing cancer species: nivolumab-response cells and Janus kinase (JAK1/2) mutation cells. We selected 3 therapeutic schemes that have been tested in the clinical trials: 3 mg/kg Q2w, 10 mg/kg Q2w, and 480 mg Q4w. The simulation was performed under the intervals of 75, 125, and 175 days, respectively, for each regimen. The data sources of the pharmacokinetic parameters used in this study were collected from previous published clinical trials. Other parameters in the evolutionary model come from the existing references. FINDINGS: Predictions under various dose schedules indicated a strong selection for nivolumab-independent cells. Under the 3 mg/kg dose strategy, the reproduction rate of JAK mutation cells was highest, with strongest tumor elimination ability at a 75-day interval between treatments. Prolonged drug intervals to 125 or 175 days delayed tumor evolution but accelerated tumor recurrence. Although 10 mg/kg Q2w had an obvious clinical effect in a short time, it further promotes the progress of resistant population compared with the 3 mg/kg dose. Our model suggests that 480 mg Q4w would be more valuable in terms of clinical efficacy, but complete resistant occurs earlier regardless the interval. IMPLICATIONS: The results of this study emphasize that increasing the dose or shortening the interval between doses accelerates the evolution of heterogeneous populations, although the short-term effect is significant. In practice, the therapeutic regimen should be balanced according to the evolutionary principle.


Subject(s)
Neoplasms , Nivolumab , Computer Simulation , Drug Administration Schedule , Humans , Neoplasms/drug therapy , Nivolumab/therapeutic use , Treatment Outcome
17.
J Food Sci ; 86(11): 4828-4839, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34642954

ABSTRACT

A phenylhexyl isothiocyanate (PITC) precolumn derivatization quantitative analysis of multicomponents by a single marker (QAMS) strategy for the simultaneous analysis of 20 free amino acids (FAA) in Dendrobium huoshanense is proposed. The method was validated by the linearity, limit of detection (LDO), and limit of quantitation (LOQ), recovery, precision, and stability. The results showed that when applying the established method, the LOQ of the FFAs was lower than 1 ng/ml except threonine (1.32 ng) and cysteine (1.16 ng). The QAMS investigation revealed that, using any one of the 20 FAAs as the reference internal standard, no significant differences were observed between the external standard method and the QAMS method for the quantification of FAAs in D. huoshanense by PITC precolumn derivatization [The relative standard deviation (RSD, %) by QAMS and ESM were all below 5%]. HPLC fingerprint investigation combined with similar analysis (the similarity values for S1-S25 were >0.875) and quality fluctuation analysis showed that the cultivation environment might have a great effect on the accumulation of FAAs in D. huoshanense. Overall, our study showed that we might increase the accuracy and scope of the simultaneous quantification of multicomponents using the QAMS technique by being derivatized with a strong UV absorbing group, and QAMS combined with chromatographic fingerprinting can be considered good quality criteria for the quality control of D. huoshanense and may provide analytical technical support for research on Maillard Reaction during the further processing of D. huoshanense.


Subject(s)
Dendrobium , Drugs, Chinese Herbal , Amino Acids , Chromatography, High Pressure Liquid , Quality Control
18.
J Adv Res ; 33: 117-126, 2021 11.
Article in English | MEDLINE | ID: mdl-34603783

ABSTRACT

Introduction: The impact of mitochondrial haplogroups on Alzheimer's disease (AD) risk has not been fully elucidated and warrants further investigation at the subgroup level. Objectives: The aim of this research is to evaluate the association between mitochondrial haplogroups and AD risk in subgroups level. Methods: In total, 809 AD Neuroimaging Initiative subjects were assessed using mtDNA sequencing, the AD Assessment Scale-Cognitive Subscale (ADAS-cog), hippocampal volume measurements, the hypometabolic convergence index (HCI), and MCI-to-AD conversion proportion measurements. Results: The frequency of haplogroup J was significantly higher than that of other haplogroups in the AD group (p = 0.013). According to the correlation between haplogroup J-specific SNPs and ADAS-cog, haplogroup J was divided into four subgroups harboring exacerbating SNPs, protective SNPs, both exacerbating and protective SNPs, or irrelevant SNPs. The subgroups harboring exacerbating SNPs exhibited higher AD risk represented by the levels of ADAS-cog, hippocampal volume, HCI, and MCI-to-AD conversion proportion than other subgroups. Conclusion: Heterogeneity existed among the subgroups of haplogroup J, which suggested that different subgroups exhibited different levels of AD risk. This study provides novel insights into the correlation between mitochondrial haplogroups and AD risk.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , DNA, Mitochondrial/genetics , Humans , Polymorphism, Single Nucleotide/genetics
19.
CPT Pharmacometrics Syst Pharmacol ; 10(12): 1512-1524, 2021 12.
Article in English | MEDLINE | ID: mdl-34596967

ABSTRACT

Patients with cardiovascular comorbidity are less tolerant to cardiotoxic drugs and should be treated with reduced doses to prevent cardiotoxicity. However, the safe-equivalent dose of antitumor drugs in patients with cardiovascular disease/risk is difficult to predict because they are usually excluded from clinical trials as a result of ethical considerations. In this study, a translational quantitative system pharmacology-pharmacokinetic-pharmacodynamic (QSP-PK-PD) model was developed based on preclinical study to predict the safe-equivalence dose of doxorubicin in patients with or without cardiovascular disease. Virtual clinical trials were conducted to validate the translational QSP-PK-PD model. The model replicated several experimental and clinical observations: the left ventricular ejection fraction (LVEF) was reduced and the left ventricular end-diastolic volume (LVEDV) was elevated in systolic dysfunction rats, the LVEF was preserved and LVEDV reduced in diastolic dysfunction rats, and patients with preexisting cardiovascular disease were more vulnerable to doxorubicin-induced cardiac dysfunction than cardiovascular healthy patients. A parameter sensitivity analysis showed that doxorubicin-induced cardiovascular dysfunction was mainly determined by the sensitivity of cardiomyocytes to cardiotoxic drugs and the baseline value of LVEDV, reflected in LVEF change percentage from the baseline. Blood pressure was the least sensitive factor affecting doxorubicin-induced cardiotoxicity.


Subject(s)
Cardiovascular Diseases/epidemiology , Doxorubicin/administration & dosage , Models, Biological , Neoplasms/drug therapy , Neoplasms/epidemiology , Animals , Comorbidity , Dose-Response Relationship, Drug , Doxorubicin/adverse effects , Hemodynamics , Humans , Network Pharmacology , Rats
20.
Article in English | MEDLINE | ID: mdl-33735806

ABSTRACT

A rapid pressurized capillary electrochromatography (pCEC) method has been successfully developed for the simultaneous determination of 16 phytohormones in Dendrobium huoshanense. Effects of wavelength, mobile phase, the flow rate, pH value, concentration of buffer and applied voltage were investigated, respectively. The results showed that the 16 phytohormones could be baseline-separated rapidly in less than 21 min on a reversed-phase EP-100-20/45-3-C18 capillary column (total length of 45 cm, effective length of 20 cm, diameter of 100 µm, ODS packing inside for 3 µm) with ACN/5.0 mM ammonium acetate (containing 0.05% formic acid, pH = 3) as the mobile phase using gradient elution mode as follows: 0.1-10.0 min 40%ACN,10-15.0 min 70%ACN, 15.0-20 min 80% ACN, 20-21.0 min 80% ACN at a flow rate of 0.12 mL/min, applied voltage of -5 kV and a UV detection wavelength of 210 nm. The method validation howed that the established method is precise and stability, and the RSDs of intra- and inter-day precision based retention time and peak area were all below 5%. Employed the established method, in our experimental conditions, total 6 endogenous hormones including IAA, IBA, NAA, GA, ABA, t-Z were detected in D. huoshense. However, a relative larger amount of exogenous hormone 2,4-D (25.3 ~ 4.2 µg/kg) and 6-BA (79.5 ~ 35.4 µg/kg) were detected in 1 ~ 4 year old cultivated D. huoshense, suggesting there were still a certain amount of exogenous hormone residue in tissue-cultured D. huoshanese though they had been transplanted to field cultivation from the test-tube plantlets for several years.


Subject(s)
Capillary Electrochromatography/methods , Dendrobium/chemistry , Plant Growth Regulators/analysis , Limit of Detection , Linear Models , Plant Extracts/chemistry , Plant Stems/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...