Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(32): e2110333, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35765212

ABSTRACT

Solid-state electrolytes (SSEs) formed inside an electrochemical cell by polymerization of a liquid precursor provide a promising strategy for overcoming problems with electrolyte wetting in solid-state batteries. Hybrid solid-state polymer electrolytes (HSPEs) created by in situ polymerization of a conventional liquid precursor containing electrochemically inert nanostructures are of particular interest because they offer a mechanism for selectively reinforcing or adding new functionalities to the electrolyte-removing the need for high degrees of polymerization. The synthesis, structure, chemical kinetics, ion-transport properties and electrochemical characteristics of HSPEs created by Al(OTf)3 -initiated polymerization of 1,3-dioxolane (DOL) containing hairy, nano-sized SiO2  particles are reported. Small-angle X-ray scattering reveals the particles are well-dispersed in liquid DOL. Strong interaction between poly(ethylene glycol) molecules tethered to the SiO2  particles and poly(DOL) lead to co-crystallization-anchoring the nanoparticles in their host It also enables polymerization-depolymerization processes in DOL to be studied and controlled. The utility of the in-situ-formed HSPE, is demonstrated first in Li|HSPE|Cu half cells, which manifest Coulombic efficiencies (CE) values approaching 99%. HSPEs are also demonstrated in solid-state lithium-sulfur-polyacrylonitrile (SPAN) composite full-cell batteries. The in-situ-formed Li|HSPE|SPAN cells show good cycling stability and thus provide a promising path toward all-solid-state batteries.

2.
Proc Natl Acad Sci U S A ; 117(42): 26053-26060, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33020296

ABSTRACT

In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO3, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as -50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm2 over 1,000 cycles with 99.1% CE; 3 mAh/cm2 over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm2 over 100 cycles with 99.3% CE). Our finding that LiNO3 promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO3 salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquid electrolyte solvent. As a first step toward understanding practical benefits of these findings, we create functional Li||lithium iron phosphate (LFP) batteries in which LFP cathodes with high capacity (5 to 10 mAh/cm2) are paired with thin (50 µm) lithium metal anodes, and investigate their galvanostatic electrochemical cycling behaviors.

3.
Langmuir ; 36(31): 9047-9053, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32659097

ABSTRACT

When ion transport in a binary liquid electrolyte is driven at potentials above the thermal voltage, an extended space charge region forms at the electrolyte/electrode interface and triggers the hydrodynamic instability termed electroconvection. We experimentally show that this instability can be completely arrested in soft colloidal suspension electrolytes composed of low concentrations of polymer-grafted nanoparticles in a liquid host. The mechanism is revealed by means of X-ray scattering, Brownian dynamics calculations, and linear stability analysis to involve overlap of the soft particles at low particle fractions to create a jammed, nanoporous medium that resists convective flow by a Darcy-Brinkman like drag on the electrolyte solvent.

4.
Sci Adv ; 6(25): eabb1122, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596468

ABSTRACT

The propensity of metal anodes of contemporary interest (e.g., Li, Al, Na, and Zn) to form non-planar, dendritic morphologies during battery charging is a fundamental barrier to achievement of full reversibility. We experimentally investigate the origins of dendritic electrodeposition of Zn, Cu, and Li in a three-electrode electrochemical cell bounded at one end by a rotating disc electrode. We find that the classical picture of ion depletion-induced growth of dendrites is valid in dilute electrolytes but is essentially irrelevant in the concentrated (≥1 M) electrolytes typically used in rechargeable batteries. Using Zn as an example, we find that ion depletion at the mass transport limit may be overcome by spontaneous reorientation of Zn crystallites from orientations parallel to the electrode surface to dominantly homeotropic orientations, which appear to facilitate contact with cations outside the depletion layer. This chemotaxis-like process causes obvious texturing and increases the porosity of metal electrodeposits.

5.
Adv Mater ; 32(12): e1905629, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32053238

ABSTRACT

Solid-state batteries enabled by solid-state polymer electrolytes (SPEs) are under active consideration for their promise as cost-effective platforms that simultaneously support high-energy and safe electrochemical energy storage. The limited oxidative stability and poor interfacial charge transport in conventional polymer electrolytes are well known, but difficult challenges must be addressed if high-voltage intercalating cathodes are to be used in such batteries. Here, ether-based electrolytes are in situ polymerized by a ring-opening reaction in the presence of aluminum fluoride (AlF3 ) to create SPEs inside LiNi0.6 Co0.2 Mn0.2 O2 (NCM) || Li batteries that are able to overcome both challenges. AlF3 plays a dual role as a Lewis acid catalyst and for the building of fluoridized cathode-electrolyte interphases, protecting both the electrolyte and aluminum current collector from degradation reactions. The solid-state NCM || Li metal batteries exhibit enhanced specific capacity of 153 mAh g-1 under high areal capacity of 3.0 mAh cm-2 . This work offers an important pathway toward solid-state polymer electrolytes for high-voltage solid-state batteries.

6.
Science ; 366(6465): 645-648, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31672899

ABSTRACT

The propensity of metals to form irregular and nonplanar electrodeposits at liquid-solid interfaces has emerged as a fundamental barrier to high-energy, rechargeable batteries that use metal anodes. We report an epitaxial mechanism to regulate nucleation, growth, and reversibility of metal anodes. The crystallographic, surface texturing, and electrochemical criteria for reversible epitaxial electrodeposition of metals are defined and their effectiveness demonstrated by using zinc (Zn), a safe, low-cost, and energy-dense battery anode material. Graphene, with a low lattice mismatch for Zn, is shown to be effective in driving deposition of Zn with a locked crystallographic orientation relation. The resultant epitaxial Zn anodes achieve exceptional reversibility over thousands of cycles at moderate and high rates. Reversible electrochemical epitaxy of metals provides a general pathway toward energy-dense batteries with high reversibility.

7.
Angew Chem Int Ed Engl ; 57(4): 992-996, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29227557

ABSTRACT

We report a facile in situ synthesis that utilizes readily accessible SiCl4 cross-linking chemistry to create durable hybrid solid-electrolyte interphases (SEIs) on metal anodes. Such hybrid SEIs composed of Si-interlinked OOCOR molecules that host LiCl salt exhibit fast charge-transfer kinetics and as much as five-times higher exchange current densities, in comparison to their spontaneously formed analogues. Electrochemical analysis and direct optical visualization of Li and Na deposition in symmetric Li/Li and Na/Na cells show that the hybrid SEI provides excellent morphological control at high current densities (3-5 mA cm-2 ) for Li and even for notoriously unstable Na metal anodes. The fast interfacial transport attributes of the SEI are also found to be beneficial for Li-S cells and stable electrochemical cycling was achieved in galvanostatic studies at rates as high as 2 C. Our work therefore provides a promising approach towards rational design of multifunctional, elastic SEIs that overcome the most serious limitations of spontaneously formed interphases on high-capacity metal anodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...