Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Microbiol Res ; 285: 127769, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38797112

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a global threat due to its high mortality in clinical patients. However, the specific mechanisms underlying this increased mortality remain unclear. The objective of this study is to investigate how the development of a resistance phenotype contributes to the significantly higher mortality associated with this pathogen. To achieve this, a collection of isogeneic strains was generated. The clinical carbapenem-susceptible K. pneumoniae (CSKP) strain HKU3 served as the control isolate, while HKU3-KPC was created through conjugation with a blaKPC-2-bearing plasmid and served as clinical CRKP strain. Using a sepsis model, it was demonstrated that both HKU3 and HKU3-KPC exhibited similar levels of virulence. Flow cytometry, RNA-seq, and ELISA analysis were employed to assess immune cell response, M1 macrophage polarization, and cytokine storm induction, revealing that both strains elicited comparable types and levels of these immune responses. Subsequently, meropenem was utilized to treat K. pneumoniae infection, and it was found that meropenem effectively reduced bacterial load, inhibited M1 macrophage polarization, and suppressed serum cytokine production during HKU3 (CSKP) infection. However, these effects were not observed in the case of HKU3-KPC (CRKP) infection. These findings provide evidence that the high mortality associated with CRKP is attributed to its enhanced survival within the host during antibiotic treatment, resulting in a cytokine storm and subsequent host death. The development of an effective therapy for CRKP infections could significantly reduce the mortality caused by this pathogen.

2.
Article in English | MEDLINE | ID: mdl-38798210

ABSTRACT

BACKGROUND: Calcitonin (CT) is a sensitive serum marker of medullary thyroid carcinoma usually detected via immunoassays; however, its levels are easily disturbed by several endogenous factors. OBJECTIVE: The study aimed to discuss a case of suspected interference resulting in aberrant CT values and review previous reports of CT interference. METHODS: A female patient visited our clinic with a physical ultrasound examination showing a slightly enlarged thyroid gland with small nodules. She had elevated CT levels, inconsistent with the clinical presentation and other findings. We evaluated the results by retesting using the same platform, platform validation, multiplex dilution, Polyethylene Glycol (PEG) precipitation, heterophilic blocking tubes, and RET gene analysis. RESULTS: Retesting CT using the same platform confirmed the high value obtained. However, serial dilution of the sample produced nonlinear results, suggesting some interference. While PEG precipitation did not significantly reduce the CT level, incubating the sample in HBTs normalized the CT value, indicating interference from heterophilic antibodies. Gene sequencing revealed no RET mutations. CONCLUSION: In cases where elevated CT levels are inconsistent with clinical presentations and other findings, the laboratory technicians should communicate with clinicians, analyze the reasons for the inconsistent results, and use different methods to verify the results. Accurate testing provides realistic and reliable data for doctors and patients and helps to avoid unnecessary procedures.

3.
Front Nutr ; 11: 1379982, 2024.
Article in English | MEDLINE | ID: mdl-38798768

ABSTRACT

Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.

4.
BMC Microbiol ; 24(1): 149, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678219

ABSTRACT

BACKGROUND: Recognition of seasonal trends in bacterial infection and drug resistance rates may enhance diagnosis, direct therapeutic strategies, and inform preventive measures. Limited data exist on the seasonal variability of Acinetobacter baumannii. We investigated the seasonality of A. baumannii, the correlation between temperature and meropenem resistance, and the impact of temperature on this bacterium. RESULTS: Meropenem resistance rates increased with lower temperatures, peaking in winter/colder months. Nonresistant strain detection exhibited temperature-dependent seasonality, rising in summer/warmer months and declining in winter/colder months. In contrast, resistant strains showed no seasonality. Variations in meropenem-resistant and nonresistant bacterial resilience to temperature changes were observed. Nonresistant strains displayed growth advantages at temperatures ≥ 25 °C, whereas meropenem-resistant A. baumannii with ß-lactamase OXA-23 exhibited greater resistance to low-temperature (4 °C) stress. Furthermore, at 4 °C, A. baumannii upregulated carbapenem resistance-related genes (adeJ, oxa-51, and oxa-23) and increased meropenem stress tolerance. CONCLUSIONS: Meropenem resistance rates in A. baumannii display seasonality and are negatively correlated with local temperature, with rates peaking in winter, possibly linked to the differential adaptation of resistant and nonresistant isolates to temperature fluctuations. Furthermore, due to significant resistance rate variations between quarters, compiling monthly or quarterly reports might enhance comprehension of antibiotic resistance trends. Consequently, this could assist in formulating strategies to control and prevent resistance within healthcare facilities.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Meropenem , Microbial Sensitivity Tests , Seasons , Temperature , beta-Lactamases , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Adaptation, Physiological/genetics , Drug Resistance, Bacterial/genetics , Humans , Acinetobacter Infections/microbiology , Bacterial Proteins/genetics
5.
Sci Rep ; 14(1): 9643, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38670997

ABSTRACT

Optical coherence tomography angiography (OCTA) is widely used for non-invasive retinal vascular imaging, but the OCTA methods used to assess retinal perfusion vary. We evaluated the different methods used to assess retinal perfusion between OCTA studies. MEDLINE and Embase were searched from 2014 to August 2021. We included prospective studies including ≥ 50 participants using OCTA to assess retinal perfusion in either global retinal or systemic disorders. Risk of bias was assessed using the National Institute of Health quality assessment tool for observational cohort and cross-sectional studies. Heterogeneity of data was assessed by Q statistics, Chi-square test, and I2 index. Of the 5974 studies identified, 191 studies were included in this evaluation. The selected studies employed seven OCTA devices, six macula volume dimensions, four macula subregions, nine perfusion analyses, and five vessel layer definitions, totalling 197 distinct methods of assessing macula perfusion and over 7000 possible combinations. Meta-analysis was performed on 88 studies reporting vessel density and foveal avascular zone area, showing lower retinal perfusion in patients with diabetes mellitus than in healthy controls, but with high heterogeneity. Heterogeneity was lowest and reported vascular effects strongest in superficial capillary plexus assessments. Systematic review of OCTA studies revealed massive heterogeneity in the methods employed to assess retinal perfusion, supporting calls for standardisation of methodology.


Subject(s)
Retinal Vessels , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Retinal Vessels/diagnostic imaging , Fluorescein Angiography/methods , Angiography/methods
6.
medRxiv ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38633771

ABSTRACT

Introduction: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. 3,10,13 However, the effects of taVNS on cardiovascular dynamics in critically ill patients like those with SAH have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population 5 . Therefore, we assessed the impact of both acute taVNS and repetitive taVNS on cardiovascular function in this study. Methods: In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a Sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram (ECG) readings and vital signs. We compared long-term changes in heart rate, heart rate variability, QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored rapidly responsive cardiovascular biomarkers in patients exhibiting clinical improvement. Results: We found that repetitive taVNS did not significantly alter heart rate, corrected QT interval, blood pressure, or intracranial pressure. However, taVNS increased overall heart rate variability and parasympathetic activity from 5-10 days after initial treatment, as compared to the sham treatment. Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, intracranial pressure, or heart rate variability. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than 1 point in their Modified Rankin Score at the time of discharge. Conclusions: Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment. Trial registration: NCT04557618.

8.
medRxiv ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38633803

ABSTRACT

Background: Accurate identification of inflammatory cells from mucosal histopathology images is important in diagnosing ulcerative colitis. The identification of eosinophils in the colonic mucosa has been associated with disease course. Cell counting is not only time-consuming but can also be subjective to human biases. In this study we developed an automatic eosinophilic cell counting tool from mucosal histopathology images, using deep learning. Method: Four pediatric IBD pathologists from two North American pediatric hospitals annotated 530 crops from 143 standard-of-care hematoxylin and eosin (H & E) rectal mucosal biopsies. A 305/75 split was used for training/validation to develop and optimize a U-Net based deep learning model, and 150 crops were used as a test set. The U-Net model was then compared to SAU-Net, a state-of-the-art U-Net variant. We undertook post-processing steps, namely, (1) the pixel-level probability threshold, (2) the minimum number of clustered pixels to designate a cell, and (3) the connectivity. Experiments were run to optimize model parameters using AUROC and cross-entropy loss as the performance metrics. Results: The F1-score was 0.86 (95%CI:0.79-0.91) (Precision: 0.77 (95%CI:0.70-0.83), Recall: 0.96 (95%CI:0.93-0.99)) to identify eosinophils as compared to an F1-score of 0.2 (95%CI:0.13-0.26) for SAU-Net (Precision: 0.38 (95%CI:0.31-0.46), Recall: 0.13 (95%CI:0.08-0.19)). The inter-rater reliability was 0.96 (95%CI:0.93-0.97). The correlation between two pathologists and the algorithm was 0.89 (95%CI:0.82-0.94) and 0.88 (95%CI:0.80-0.94) respectively. Conclusion: Our results indicate that deep learning-based automated eosinophilic cell counting can obtain a robust level of accuracy with a high degree of concordance with manual expert annotations.

10.
JMIR Res Protoc ; 13: e52602, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483456

ABSTRACT

BACKGROUND: Artificial intelligence as a medical device (AIaMD) has the potential to transform many aspects of ophthalmic care, such as improving accuracy and speed of diagnosis, addressing capacity issues in high-volume areas such as screening, and detecting novel biomarkers of systemic disease in the eye (oculomics). In order to ensure that such tools are safe for the target population and achieve their intended purpose, it is important that these AIaMD have adequate clinical evaluation to support any regulatory decision. Currently, the evidential requirements for regulatory approval are less clear for AIaMD compared to more established interventions such as drugs or medical devices. There is therefore value in understanding the level of evidence that underpins AIaMD currently on the market, as a step toward identifying what the best practices might be in this area. In this systematic scoping review, we will focus on AIaMD that contributes to clinical decision-making (relating to screening, diagnosis, prognosis, and treatment) in the context of ophthalmic imaging. OBJECTIVE: This study aims to identify regulator-approved AIaMD for ophthalmic imaging in Europe, Australia, and the United States; report the characteristics of these devices and their regulatory approvals; and report the available evidence underpinning these AIaMD. METHODS: The Food and Drug Administration (United States), the Australian Register of Therapeutic Goods (Australia), the Medicines and Healthcare products Regulatory Agency (United Kingdom), and the European Database on Medical Devices (European Union) regulatory databases will be searched for ophthalmic imaging AIaMD through a snowballing approach. PubMed and clinical trial registries will be systematically searched, and manufacturers will be directly contacted for studies investigating the effectiveness of eligible AIaMD. Preliminary regulatory database searches, evidence searches, screening, data extraction, and methodological quality assessment will be undertaken by 2 independent review authors and arbitrated by a third at each stage of the process. RESULTS: Preliminary searches were conducted in February 2023. Data extraction, data synthesis, and assessment of methodological quality commenced in October 2023. The review is on track to be completed and submitted for peer review by April 2024. CONCLUSIONS: This systematic review will provide greater clarity on ophthalmic imaging AIaMD that have achieved regulatory approval as well as the evidence that underpins them. This should help adopters understand the range of tools available and whether they can be safely incorporated into their clinical workflow, and it should also support developers in navigating regulatory approval more efficiently. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/52602.

11.
JMIR Res Protoc ; 13: e50568, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536234

ABSTRACT

BACKGROUND: Diabetic eye screening (DES) represents a significant opportunity for the application of machine learning (ML) technologies, which may improve clinical and service outcomes. However, successful integration of ML into DES requires careful product development, evaluation, and implementation. Target product profiles (TPPs) summarize the requirements necessary for successful implementation so these can guide product development and evaluation. OBJECTIVE: This study aims to produce a TPP for an ML-automated retinal imaging analysis software (ML-ARIAS) system for use in DES in England. METHODS: This work will consist of 3 phases. Phase 1 will establish the characteristics to be addressed in the TPP. A list of candidate characteristics will be generated from the following sources: an overview of systematic reviews of diagnostic test TPPs; a systematic review of digital health TPPs; and the National Institute for Health and Care Excellence's Evidence Standards Framework for Digital Health Technologies. The list of characteristics will be refined and validated by a study advisory group (SAG) made up of representatives from key stakeholders in DES. This includes people with diabetes; health care professionals; health care managers and leaders; and regulators and policy makers. In phase 2, specifications for these characteristics will be drafted following a series of semistructured interviews with participants from these stakeholder groups. Data collected from these interviews will be analyzed using the shortlist of characteristics as a framework, after which specifications will be drafted to create a draft TPP. Following approval by the SAG, in phase 3, the draft will enter an internet-based Delphi consensus study with participants sought from the groups previously identified, as well as ML-ARIAS developers, to ensure feasibility. Participants will be invited to score characteristic and specification pairs on a scale from "definitely exclude" to "definitely include," and suggest edits. The document will be iterated between rounds based on participants' feedback. Feedback on the draft document will be sought from a group of ML-ARIAS developers before its final contents are agreed upon in an in-person consensus meeting. At this meeting, representatives from the stakeholder groups previously identified (minus ML-ARIAS developers, to avoid bias) will be presented with the Delphi results and feedback of the user group and asked to agree on the final contents by vote. RESULTS: Phase 1 was completed in November 2023. Phase 2 is underway and expected to finish in March 2024. Phase 3 is expected to be complete in July 2024. CONCLUSIONS: The multistakeholder development of a TPP for an ML-ARIAS for use in DES in England will help developers produce tools that serve the needs of patients, health care providers, and their staff. The TPP development process will also provide methods and a template to produce similar documents in other disease areas. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50568.

12.
Sci Rep ; 14(1): 6853, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514767

ABSTRACT

The particle breakage effect and compression characteristics of calcareous sand are related to the water content in the sand material. However, the effects of water content on the particle breakage and compression characteristics of calcareous sand have rarely been investigated. In this work, 50 sets of confined compression tests were conducted on calcareous sand specimens, and the compression characteristics and particle breakage effects of two single-particle-size groups (particle size ranges of 1-0.5 mm and 0.5-0.25 mm) of calcareous sand were investigated under five different water contents. The test results showed that with the increase in the water content, the final compression deformation of calcareous sand was positively correlated with the water content. The final compression deformation decreased when the water content reached a certain value. The water content corresponding to the peak final compression deformation was related to the gradation of the calcareous sand; the specific values were 10% and 15% for particle size ranges of 1-0.5 mm and 0.5-0.25 mm, respectively. With the increase in the water content, the slope of the loading curve of calcareous sand appeared to increase and then decrease, reaching maximum when the water content was 10%. Moreover, the slope of the loading curve was close to twice that of the loading curve of dry sand, whereas the slope of the unloading curve changed little. Under the same water content, the initial gradation had no effect on the compression and unloading characteristics of the specimens beyond a vertical pressure of 1 MPa. The effects of the variation in the water content on the particle breakage of calcareous sand were mainly reflected in the softening effect of water on the specimen particles, which reduced the Mohr strength of the particles.

13.
Small Methods ; : e2400067, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494754

ABSTRACT

Wide-bandgap (WBG) perovskite solar cells (PSCs) have been widely used as the top cell of tandem solar cells. However, photoinduced phase segregation and high open-circuit voltage loss pose significant obstacles to the development of WBG PSCs. Here, a two-step small-size A-site and large-size X-site incorporation strategy is reported to modulate the lattice distortion and improve the film quality of WBG formamidinium-methylammonium (FAMA) perovskite films for photostable PSCs based on two-step deposition method. First, CsI with content of 0-20% is introduced to tune the lattice distortion and film quality of FAMA perovskite with a bandgap of 1.70 eV. Then, 4% RbI is incorporated to further modulate the perovskite growth and lattice distortion, leading to the suppression of photoinduced phase segregation in the resultant RbCsFAMA quadruple cation perovskites. As a result, the 20%CsI/4%RbI-doped device obtains a promising efficiency of 20.6%, and the corresponding perovskite film shows good photothermal stability. Even without encapsulation, the device can maintain 92% of its initial efficiency after 1000 h of continuous operation under 1 sun equivalent white light-emitting diode illumination.

14.
Article in Spanish | PAHO-IRIS | ID: phr-59241

ABSTRACT

[RESUMEN]. La declaración SPIRIT 2013 tiene como objetivo mejorar la exhaustividad de los informes de los protocolos de los ensayos clínicos proporcionando recomendaciones basadas en la evidencia para el conjunto mínimo de elementos que deben abordarse. Esta guía ha sido fundamental para promover la evaluación transparente de nuevas intervenciones. Más recientemente, se ha reconocido cada vez más que las intervenciones con inteligencia artificial (IA) deben someterse a una evaluación rigurosa y prospectiva para demostrar su impacto en los resultados médicos. La extensión SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence, por sus siglas en inglés) es una nueva directriz para el reporte de los protocolos de ensayos clínicos que evalúan intervenciones con un componente de IA. Esta directriz se desarrolló en paralelo con su declaración complemen- taria para los informes de ensayos clínicos: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Ambas directrices se desarrollaron a través de un proceso de consenso por etapas que incluía la revisión de la literatura y la consulta a expertos para generar 26 ítems candidatos, que fueron consultados por un grupo internacional de múltiples partes interesadas en una encuesta Delphi de dos etapas (103 partes interesadas), acordados en una reunión de consenso (31 partes interesadas) y refinados a través de una lista de verificación piloto (34 participantes). La ampliación de SPIRIT-AI incluye 15 nuevos elementos que se consideraron suficientemente importantes para los protocolos de los ensayos clínicos con intervenciones de IA. Estos nuevos ítems deben ser reportados rutinariamente además de los ítems centrales de SPIRIT 2013. SPIRIT-AI recomienda que los investigadores proporcionen descripciones claras de la intervención de IA, incluyendo las instrucciones y las habilidades necesarias para su uso, el entorno en el que se integrará la intervención de IA, las consideraciones para el manejo de los datos de entrada y salida, la interacción entre el ser humano y la IA y el análisis de los casos de error. SPIRIT-AI ayudará a promover la transparencia y la exhaustividad de los protocolos de los ensayos clínicos de las intervenciones de IA. Su uso ayudará a los editores y revisores, así como a los lectores en general, a comprender, interpretar y valorar críticamente el diseño y el riesgo de sesgo de un futuro ensayo clínico.


[ABSTRACT]. The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials–Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human–AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general reader- ship, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.


[RESUMO]. A declaração SPIRIT 2013 tem como objetivo melhorar a integralidade dos relatórios dos protocolos de ensaios clínicos, fornecendo recomendações baseadas em evidências para o conjunto mínimo de itens que devem ser abordados. Essas orientações têm sido fundamentais para promover uma avaliação transparente de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) é uma nova diretriz de relatório para protocolos de ensaios clínicos que avaliam intervenções com um componente de IA. Essa diretriz foi desenvolvida em paralelo à sua declaração complementar para relatórios de ensaios clínicos, CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 26 itens can- didatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão SPIRIT-AI inclui 15 itens novos que foram considerados suficientemente importantes para os protocolos de ensaios clínicos com intervenções que utilizam IA. Esses itens novos devem constar dos relatórios de rotina, juntamente com os itens básicos da SPIRIT 2013. A SPIRIT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA será integrada, considerações sobre o manuseio dos dados de entrada e saída, a interação humano-IA e a análise de casos de erro. A SPIRIT-AI ajudará a promover a transparência e a integralidade nos protocolos de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente o delineamento e o risco de viés de um futuro estudo clínico.


Subject(s)
Artificial Intelligence , Clinical Trial , Clinical Protocols , Artificial Intelligence , Clinical Trial , Clinical Protocols , Artificial Intelligence , Clinical Trial
15.
Comput Biol Med ; 171: 108093, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354499

ABSTRACT

BACKGROUND: There has been an increase in the development of both machine learning (ML) and deep learning (DL) prediction models in Inflammatory Bowel Disease. We aim in this systematic review to assess the methodological quality and risk of bias of ML and DL IBD image-based prediction studies. METHODS: We searched three databases, PubMed, Scopus and Embase, to identify ML and DL diagnostic or prognostic predictive models using imaging data in IBD, to Dec 31, 2022. We restricted our search to include studies that primarily used conventional imaging data, were undertaken in human participants, and published in English. Two reviewers independently reviewed the abstracts. The methodological quality of the studies was determined, and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). RESULTS: Forty studies were included, thirty-nine developed diagnostic models. Seven studies utilized ML approaches, six were retrospective and none used multicenter data for model development. Thirty-three studies utilized DL approaches, ten were prospective, and twelve multicenter studies. Overall, all studies demonstrated high risk of bias. ML studies were evaluated in 4 domains all rated as high risk of bias: participants (6/7), predictors (1/7), outcome (3/7), and analysis (7/7), and DL studies evaluated in 3 domains: participants (24/33), outcome (10/33), and analysis (18/33). The majority of image-based studies used colonoscopy images. CONCLUSION: The risk of bias was high in AI IBD image-based prediction models, owing to insufficient sample size, unreported missingness and lack of an external validation cohort. Models with a high risk of bias are unlikely to be generalizable and suitable for clinical implementation.


Subject(s)
Artificial Intelligence , Inflammatory Bowel Diseases , Humans , Prospective Studies , Retrospective Studies , Machine Learning , Inflammatory Bowel Diseases/diagnostic imaging , Multicenter Studies as Topic
16.
Br J Anaesth ; 132(5): 1016-1021, 2024 May.
Article in English | MEDLINE | ID: mdl-38302346

ABSTRACT

A recent study by Suissa and colleagues explored the clinical relevance of a medical image segmentation metric (Dice metric) commonly used in the field of artificial intelligence (AI). They showed that pixel-wise agreement for physician identification of structures on ultrasound images is variable, and a relatively low Dice metric (0.34) correlated to a substantial agreement on subjective clinical assessment. We highlight the need to bring structure and clinical perspective to the evaluation of medical AI, which clinicians are best placed to direct.


Subject(s)
Anesthesia, Conduction , Physicians , Humans , Artificial Intelligence
18.
Rev Panam Salud Publica ; 48: e12, 2024.
Article in Spanish | MEDLINE | ID: mdl-38304411

ABSTRACT

The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.


A declaração SPIRIT 2013 tem como objetivo melhorar a integralidade dos relatórios dos protocolos de ensaios clínicos, fornecendo recomendações baseadas em evidências para o conjunto mínimo de itens que devem ser abordados. Essas orientações têm sido fundamentais para promover uma avaliação transparente de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) é uma nova diretriz de relatório para protocolos de ensaios clínicos que avaliam intervenções com um componente de IA. Essa diretriz foi desenvolvida em paralelo à sua declaração complementar para relatórios de ensaios clínicos, CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 26 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão SPIRIT-AI inclui 15 itens novos que foram considerados suficientemente importantes para os protocolos de ensaios clínicos com intervenções que utilizam IA. Esses itens novos devem constar dos relatórios de rotina, juntamente com os itens básicos da SPIRIT 2013. A SPIRIT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA será integrada, considerações sobre o manuseio dos dados de entrada e saída, a interação humano-IA e a análise de casos de erro. A SPIRIT-AI ajudará a promover a transparência e a integralidade nos protocolos de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente o delineamento e o risco de viés de um futuro estudo clínico.

19.
Rev Panam Salud Publica ; 48: e13, 2024.
Article in Spanish | MEDLINE | ID: mdl-38352035

ABSTRACT

The CONSORT 2010 statement provides minimum guidelines for reporting randomized trials. Its widespread use has been instrumental in ensuring transparency in the evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate impact on health outcomes. The CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trials evaluating interventions with an AI component. It was developed in parallel with its companion statement for clinical trial protocols: SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 29 candidate items, which were assessed by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a two-day consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The CONSORT-AI extension includes 14 new items that were considered sufficiently important for AI interventions that they should be routinely reported in addition to the core CONSORT 2010 items. CONSORT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, the human-AI interaction and provision of an analysis of error cases. CONSORT-AI will help promote transparency and completeness in reporting clinical trials for AI interventions. It will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the quality of clinical trial design and risk of bias in the reported outcomes.


A declaração CONSORT 2010 apresenta diretrizes mínimas para relatórios de ensaios clínicos randomizados. Seu uso generalizado tem sido fundamental para garantir a transparência na avaliação de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão CONSORT-AI (Consolidated Standards of Reporting Trials ­ Artificial Intelligence) é uma nova diretriz para relatórios de ensaios clínicos que avaliam intervenções com um componente de IA. Ela foi desenvolvida em paralelo à sua declaração complementar para protocolos de ensaios clínicos, a SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials ­ Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 29 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão CONSORT-AI inclui 14 itens novos que, devido à sua importância para as intervenções de IA, devem ser informados rotineiramente juntamente com os itens básicos da CONSORT 2010. A CONSORT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA está inserida, considerações sobre o manuseio dos dados de entrada e saída da intervenção de IA, a interação humano-IA e uma análise dos casos de erro. A CONSORT-AI ajudará a promover a transparência e a integralidade nos relatórios de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente a qualidade do desenho do ensaio clínico e o risco de viés nos resultados relatados.

20.
Sci Total Environ ; 922: 171296, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38423324

ABSTRACT

Largely driven by agricultural pressures, biodiversity has experienced great changes globally. Exploring biodiversity responses to agricultural practices associated with agricultural intensification can benefit biodiversity conservation in agricultural landscapes. However, the effects of agricultural practices may also extend to natural habitats. Moreover, agricultural impacts may also vary with geographical region. We analyze biodiversity responses to landscape cropland coverage, cropping frequency, fertiliser and yield, among different land-use types and across geographical regions. We find that species richness and total abundance generally respond negatively to increased landscape cropland coverage. Biodiversity reductions in human land-use types (pasture, plantation forest and cropland) were stronger in tropical than non-tropical regions, which was also true for biodiversity reductions with increasing yield in both human and natural land-use types. Our results underline substantial biodiversity responses to agricultural practices not only in cropland but also in natural habitats, highlighting the fact that biodiversity conservation demands a greater focus on optimizing agricultural management at the landscape scale.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Conservation of Natural Resources/methods , Biodiversity , Forests , Agriculture/methods , Crops, Agricultural
SELECTION OF CITATIONS
SEARCH DETAIL
...