Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 445
Filter
1.
Ultrasonics ; 142: 107359, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38823151

ABSTRACT

Conventional surface acoustic wave (SAW) atomizers require a direct water supply on the surface, which can be complex and cumbersome. This paper presents a novel SAW atomizer that uses lateral acoustic wetting to achieve atomization without a direct water supply. The device works by simply pressing a piece of wetted paper strip against the bottom of an excited piezoelectric transducer. The liquid then flows along the side to the unmodified surface edge, where it is atomized into a well-converging mist in a stable and sustainable manner. We identified this phenomenon as the edge effect, using numerical simulation results of surface displacement mode. The feasibility of the prototype design was demonstrated by observing and investigating the integrated process of liquid extraction, transport, and atomization. We further explored the hydrodynamic principles of the change and breakup in liquid film geometry under different input powers. Experiments demonstrate that our atomizer is capable of generating high-quality fine liquid particles stably and rapidly even at very high input power. Compared to conventional SAW atomizer, the dispersion of mist width can be scaled down by 70%, while the atomization rate can be increased by 37.5%. Combined with the advantages of easy installation and robustness, the edge effect-based atomizer offers an attractive alternative to current counterparts for applications requiring high efficiency and miniaturization, such as simultaneous synthesis and encapsulation of nanoparticles, pulmonary drug delivery and portable inhalation therapy.

2.
Phys Chem Chem Phys ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829308

ABSTRACT

Molten salts play an important role in various energy-related applications such as high-temperature heat transfer fluids and reaction media. However, the extreme molten salt environment causes the degradation of materials, raising safety and sustainability challenges. A fundamental understanding of material-molten salt interfacial evolution is needed. This work studies the transformation of metallic Cr in molten 50/50 mol% KCl-MgCl2via multi-modal in situ synchrotron X-ray nano-tomography, diffraction and spectroscopy combined with density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Notably, in addition to the dissolution of Cr in the molten salt to form porous structures, a δ-A15 Cr phase was found to gradually form as a result of the metal-salt interaction. This phase change of Cr is associated with a change in the coordination environment of Cr at the interface. DFT and AIMD simulations provide a basis for understanding the enhanced stability of δ-A15 Cr vs. bcc Cr, by revealing their competitive phase thermodynamics at elevated temperatures and probing the interfacial behavior of the molten salt at relevant facets. This study provides critical insights into the morphological and chemical evolution of metal-molten salt interfaces. The combination of multimodal synchrotron analysis and atomic simulation also offers an opportunity to explore a broader range of systems critical to energy applications.

3.
Nanoscale ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841880

ABSTRACT

Aggregation-induced emission luminogens (AIEgens) enable highly sensitive and in situ visualization of sulfatase to benefit the early diagnosis of breast cancer (BC), but current sulfatase AIEgens always emit visible light (<650 nm). Herein, a near-infrared (NIR) AIEgen QMT-SFA is developed for sulfatase imaging in vivo. Hydrophilic QMT-SFA is cleaved by sulfatase to yield hydrophobic QMT-OH, which subsequently aggregates into nanoparticles to turn the AIE fluorescence "on", enabling sensitive sulfatase imaging in 4T1 cells and mouse models.

5.
Mol Med ; 30(1): 59, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745316

ABSTRACT

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Subject(s)
Autophagy , Disease Models, Animal , Microglia , Neuroinflammatory Diseases , Reperfusion Injury , Animals , Microglia/drug effects , Microglia/metabolism , Mice , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/etiology , Autophagy/drug effects , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Cell Polarity/drug effects
6.
J Orthop Translat ; 46: 65-78, 2024 May.
Article in English | MEDLINE | ID: mdl-38808263

ABSTRACT

Backgroud: Iron overload is a prevalent condition in the elderly, often associated with various degenerative diseases, including intervertebral disc degeneration (IDD). Nevertheless, the mechanisms responsible for iron ion accumulation in tissues and the mechanism that regulate iron homeostasis remain unclear. Transferrin receptor-1 (TFR1) serves as the primary cellular iron gate, playing a pivotal role in controlling intracellular iron levels, however its involvement in IDD pathogenesis and the underlying mechanism remains obscure. Methods: Firstly, IDD mice model was established to determine the iron metabolism associated proteins changes during IDD progression. Then CEP chondrocytes were isolated and treated with TBHP or pro-inflammatory cytokines to mimic pathological environment, western blotting, immunofluorescence assay and tissue staining were employed to explore the underlying mechanisms. Lastly, TfR1 siRNA and Feristatin II were employed and the degeneration of IDD was examined using micro-CT and immunohistochemical analysis. Results: We found that the IDD pathological environment, characterized by oxidative stress and pro-inflammatory cytokines, could enhance iron influx by upregulating TFR1 expression in a HIF-2α dependent manner. Excessive iron accumulation not only induces chondrocytes ferroptosis and exacerbates oxidative stress, but also triggers the innate immune response mediated by c-GAS/STING, by promoting mitochondrial damage and the release of mtDNA. The inhibition of STING through siRNA or the reduction of mtDNA replication using ethidium bromide alleviated the degeneration of CEP chondrocytes induced by iron overload. Conclusion: Our study systemically explored the role of TFR1 mediated iron homeostasis in IDD and its underlying mechanisms, implying that targeting TFR1 to maintain balanced iron homeostasis could offer a promising therapeutic approach for IDD management. The translational potential of this article: Our study demonstrated the close link between iron metabolism dysfunction and IDD, indicated that targeting TfR1 may be a novel therapeutic strategy for IDD.

7.
Article in English | MEDLINE | ID: mdl-38809740

ABSTRACT

In this article, we propose a novel spectral tensor layer for communication-free distributed deep learning. The overall framework is as follows: first, we represent the data in tensor form (instead of vector form) and replace the matrix product in conventional neural networks with the tensor product, which in effect imposes certain transformed-induced structure on the original weight matrices, e.g., a block-circulant structure; then, we apply a linear transform along a certain dimension to split the original dataset into multiple spectral subdatasets; as a result, the proposed spectral tensor network consists of parallel branches where each branch is a conventional neural network trained on a spectral subdataset with ZERO communication cost. The parallel branches are directly ensembled (i.e., the weighted sum of their outputs) to generate an overall network with substantially stronger generalization capability than that of each branch. Moreover, the proposed method enjoys a byproduct of decentralization gain in terms of memory and computation, compared with traditional networks. It is a natural yet elegant solution for heterogeneous data in federated learning (FL), where data at different nodes have different resolutions. Finally, we evaluate the proposed spectral tensor networks on the MNIST, CIFAR-10, ImageNet-1K, and ImageNet-21K datasets, respectively, to verify that they simultaneously achieve communication-free distributed learning, distributed storage reduction, parallel computation speedup, and learning with multiresolution data.

8.
Food Chem ; 454: 139789, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38810458

ABSTRACT

Ethanol evaporation method was applied to synthesize phospholipid complexes from phosphatidylcholine (PC) and short-chain alkyl gallates (A-GAs, a typical representative of lipophenols) including butyl-, propyl- and ethyl gallates. 1H NMR, UV and FTIR showed that A-GAs were interacted with PC through weak physical interaction. Through the analysis of concentrations of A-GAs and gallic acid (GA) by an everted rat gut sac model coupled with HPLC-UV detection, phospholipid complexes were found to gradually release A-GAs. These liberated A-GAs were further hydrolyzed by intestinal lipases to release GA. Both of GA and A-GAs could cross intestinal membrane. Especially, the transmembrane A-GAs could also be hydrolyzed to produce GA. Undoubtedly, the dual release of phenol compounds from phospholipid complexes of short-chain lipophenols will be effective to extend the in vivo residence period of phenol compounds. More importantly, such behavior is easily adjusted by changing the acyl chain lengths of lipophenols in phospholipid complexes.

9.
BMC Public Health ; 24(1): 1462, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822317

ABSTRACT

BACKGROUND: The effects of household air pollution on urinary incontinence (UI) symptoms and stress urinary incontinence (SUI) symptoms have not been studied. This study seeks to investigate the correlation between household air pollution and UI/SUI symptoms among middle-aged and elderly adults in India. METHODS: We employed data derived from individuals aged 45 years and older who participated in the inaugural wave (2017-2018) of the Longitudinal Aging Study in India (LASI). The assessment of household air pollution exposure and the occurrence of UI/SUI symptoms relied on self-reported data. The analytical approach adopted was cross-sectional in nature and encompassed a cohort of 64,398 participants. To explore relationships, we utilized multivariate logistic regression analysis, incorporating subgroup analysis and interaction tests. RESULTS: 1,671 (2.59%) participants reported UI symptoms and 4,862 (7.55%) participants reported SUI symptoms. Also, the prevalence of UI/SUI symptoms is much higher among middle-aged and elderly adults who use solid polluting fuels (UI: 51.23% vs. 48.77%; SUI: 54.50% vs. 45.50%). The results revealed a noteworthy correlation between household air pollution and the probability of experiencing UI/SUI symptoms, persisting even after adjusting for all conceivable confounding variables (UI: OR = 1.552, 95% CI: 1.377-1.749, p < 0.00001; SUI: OR: 1.459, 95% CI: 1.357-1.568, p < 0.00001). Moreover, significant interaction effects were discerned for age, education level, tobacco consumption, alcohol consumption, and physical activity (p for interaction < 0.05). CONCLUSIONS: The results of our study indicate that the utilization of solid fuels in the home increases the likelihood of developing urinary incontinence and stress urinary incontinence. As a result, we argue that there is an immediate need to reform the composition of cooking fuel and raise public awareness about the adverse effects of air pollution in the home.


Subject(s)
Air Pollution, Indoor , Humans , Male , Female , Middle Aged , Aged , Air Pollution, Indoor/adverse effects , India/epidemiology , Cross-Sectional Studies , Longitudinal Studies , Urinary Incontinence/epidemiology , Prevalence , Urinary Incontinence, Stress/epidemiology , Environmental Exposure/adverse effects
10.
Food Res Int ; 187: 114423, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763674

ABSTRACT

The ß-cyclodextrin and short-chain alkyl gallates (A-GAs), which are representative of phenolipids, such as butyl, propyl, ethyl, and methyl gallates, were chosen to form inclusion complexes by the use of the freeze-drying process. In the everted rat gut sac model, HPLC-UV analysis demonstrated that the released A-GAs from inclusion complexes were degraded to yield free gallic acid (GA) (sustained-release function 1). The small intestine membrane may be crossed by both the GA and the A-GAs. A-GAs may also undergo hydrolysis to provide GA (sustained-release function 2) following transmembrane transfer. Clearly, a helpful technique for the dual sustained-release of phenolic compounds is to produce ß-cyclodextrin inclusion complexes with short-chain phenolipids. This will increase the bioactivities of phenolic compounds and prolong their in vivo residence length. Moreover, changing the carbon-chain length of these ß-cyclodextrin inclusion complexes would readily modify the dual sustained-release behavior of the phenolic compounds. Thus, our work effectively established a theoretical foundation for the use of ß-cyclodextrin inclusion complexes containing short-chain phenolipids as new source of functional food components to provide the body with phenolic compounds more efficiently.


Subject(s)
Delayed-Action Preparations , Gallic Acid , Phenols , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Animals , Rats , Gallic Acid/chemistry , Male , Phenols/chemistry , Rats, Sprague-Dawley , Freeze Drying
11.
Oncol Lett ; 27(5): 223, 2024 May.
Article in English | MEDLINE | ID: mdl-38590311

ABSTRACT

Given the increasing use of bevacizumab in combinatorial drug therapy for a multitude of different cancer types, there is a need for therapeutic drug monitoring to analyze the possible correlation between drug trough concentration, and therapeutic effect and adverse reactions. An ultra-performance liquid chromatography tandem-mass spectrometry method was then developed and validated to determine bevacizumab levels in human plasma samples. Chromatographic separation was achieved on a Shimadzu InertSustainBio C18 HP column, whereas subsequent mass spectrometric analysis was performed using a Shimadzu 8050CL triple quadrupole mass spectrometer equipped with an electro-spray ionization source in the positive ion mode. In total, three multiple reaction monitoring transitions of each of the surrogate peptides were chosen with 'FTFSLDTSK' applied as the quantification peptide whereas 'VLIYFTSSLHSGVPSR' and 'STAYLQMNSLR' were designated as the verification peptides using the Skyline software. This analytical method was then fully validated, with specificity, linearity, lower limit of quantitation, accuracy, precision, stability, matrix effect and recovery calculated. The linearity of this method was developed to be within the concentration range 5-400 µg/ml for bevacizumab in human plasma. Subsequently, eight patients with non-small cell lung cancer (NSCLC) were recruited and injected with bevacizumab over three periods of treatment to analyze their steady-state trough concentration and differences. To conclude, the results of the present study suggest that bevacizumab can be monitored in a therapeutic setting in patients with NSCLC.

13.
J Arthroplasty ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38614358

ABSTRACT

BACKGROUND: In patients undergoing total joint arthroplasty, the use of dexamethasone (DEX) may cause perioperative blood glucose (BG) disorders, leading to complications even in patients who do not have diabetes. We aimed to evaluate the effects of different DEX doses on perioperative BG levels. METHODS: A total of 135 patients who do not have diabetes were randomized into three groups: preoperative intravenous (IV) injection of normal saline (Group A, the placebo group), preoperative IV injection of 10 mg DEX (Group B), and preoperative IV injection of 20 mg DEX (Group C). Postoperative fasting BG (FBG) levels were designated as the primary outcome, while postoperative postprandial BG (PBG) levels were assigned as the secondary outcome. The incidence of complications was recorded. We also investigated the risk factors for FBG ≥ 140 mg/dL and PBG ≥ 180 mg/dL. RESULTS: The FBG levels were higher in Groups B and C than in Group A on postoperative days (PODs) 0 and 1. The PBG levels were lower for Groups A and B compared to Group C on POD 1. No differences in FBG or PBG were detected beyond POD 1. Elevated preoperative glycosylated hemoglobin A1c levels increased the risk of FBG ≥ 140 mg/dL and PBG ≥ 180 mg/dL, respectively. However, preoperative IV injection of DEX was not associated with FBG ≥ 140 mg/dL or PBG ≥ 180 mg/dL. No differences were found in postoperative complications among the three groups. CONCLUSIONS: The preoperative IV administration of 10 or 20 mg DEX in patients who do not have diabetes showed transient effects on postoperative BG after total joint arthroplasty. The preoperative glycosylated hemoglobin A1c level threshold (regardless of the administration or dosage of DEX) that increased the risk for the occurrence of FBG ≥ 140 mg/dL and PBG ≥ 180 mg/dL was 5.75 and 5.85%, respectively.

14.
ChemMedChem ; : e202400186, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627921

ABSTRACT

The Russell mechanism, proposed by Russell, is a cyclic mechanism for the formation of linear tetroxide intermediates, which can spontaneously produce cytotoxic singlet oxygen (1O2) independent of oxygen, suggesting its anticancer potential. Compared with other mainstream anticancer strategies, the Russell mechanism employed for killing cancer cells does not require external energy input, harsh pH condition, and sufficient oxygen. However, up till now, the applications of Russell mechanism in antitumor therapy have been relatively rare, and there is almost no summary of the Russell mechanism in the cancer therapy field. This minireview introduces the different metal elements-based Russell mechanisms and the relevant research progress in Russell mechanism-based cancer therapy in recent years. At the same time, we briefly discussed the current challenges and future development regarding the applications of Russell mechanism. It is hoped that this review can further expand the research of Russell Mechanism in the biomedical field, and inspire researchers to extend its application fields to antibacterial, antiinflammatory, and wound healing uses.

15.
MedComm (2020) ; 5(4): e519, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576456

ABSTRACT

Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.

16.
Bioresour Technol ; 401: 130709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636877

ABSTRACT

Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature. Low-temperature shock experiment verified the positive effect of PVA/SA@Serratia on restoring the COD removal rate and methanogenesis capacity of AnGS. Further analysis by metagenomics analysis showed that PVA/SA@Serratia stimulated higher QS activity and promoted the secretion of extracellular polymeric substance (EPS) in AnGS. The rapid construction of EPS protective layer effectively accelerated the establishment of a robust microbial community structure. PVA/SA@Serratia also enhanced multiple methanogenic pathways, including direct interspecies electron transfer. In conclusion, this study demonstrated that PVA/SA@Serratia could effectively strengthen AnGS after low-temperature shock.


Subject(s)
Alginates , Cold Temperature , Polyvinyl Alcohol , Quorum Sensing , Sewage , Alginates/pharmacology , Alginates/chemistry , Polyvinyl Alcohol/chemistry , Sewage/microbiology , Anaerobiosis , Methane/metabolism
17.
Biosens Bioelectron ; 255: 116207, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38554575

ABSTRACT

Near-infrared (NIR) aggregation induced-emission luminogens (AIEgens) circumvent the noisome aggregation-caused quenching (ACQ) effect in physiological milieu, thus holding high promise for real-time and sensitive imaging of biomarkers in vivo. ß-Galactosidase (ß-Gal) is a biomarker for primary ovarian carcinoma, but current AIEgens for ß-Gal sensing display emissions in the visible region and have not been applied in vivo. We herein propose an NIR AIEgen QM-TPA-Gal and applied it for imaging ß-Gal activity in vitro and in ovarian tumor model. After being internalized by ovarian cancer cells (e.g., SKOV3), the hydrophilic nonfluorescent QM-TPA-Gal undergoes hydrolyzation by ß-Gal to yield hydrophobic QM-TPA-OH, which subsequently aggregates into nanoparticles to turn NIR fluorescence "on" through the AIE mechanism. In vitro experimental results indicate that QM-TPA-Gal has a sensitive and selective response to ß-Gal with a limit of detection (LOD) of 0.21 U/mL. Molecular docking simulation confirms that QM-TPA-Gal has a good binding ability with ß-Gal to allow efficient hydrolysis. Furthermore, QM-TPA-Gal is successfully applied for ß-Gal imaging in SKOV3 cell and SKOV3-bearing living mouse models. It is anticipated that QM-TPA-Gal could be applied for early diagnosis of ovarian cancers or other ß-Gal-associated diseases in near future.


Subject(s)
Biosensing Techniques , Ovarian Neoplasms , Animals , Humans , Mice , Female , Fluorescent Dyes/chemistry , Molecular Docking Simulation , Ovarian Neoplasms/diagnostic imaging , Optical Imaging , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism
18.
Sci Total Environ ; 923: 171550, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38461981

ABSTRACT

To reduce pollution and carbon emissions, a quantitative evaluation of the carbon footprint of the wastewater treatment processes is crucial. However, micro carbon element flow analysis is rarely focused considering treatment efficiency of different technology. In this research, a comprehensive carbon footprint analysis is established under the micro carbon element flow analysis and macro carbon footprint analysis based on life cycle assessment (LCA). Three wastewater treatment processes (i.e., anaerobic anoxic oxic, A2O; cyclic activated sludge technology, CAST; modified cyclic activated sludge technology, M-CAST) for low carbon source urban wastewater are selected. The micro key element flow analysis illustrated that carbon source mainly flows to the assimilation function to promote microorganism growth. The carbon footprint analysis illustrated that M-CAST as the optimal wastewater treatment process had the lowest global warming potential (GWP). The key to reduce carbon emissions is to limit electricity consumption in wastewater treatment processes. Under the comprehensive carbon footprint analysis, M-CAST has the lowest environmental impact with low carbon emissions. The sensitivity analysis results revealed that biotreatment section variables considerably reduced the environmental impact on the LCA and the GWP, followed by the sludge disposal section. With this research, the optimization scheme can guide wastewater treatment plants to optimize relevant treatment sections and reduce pollution and carbon emissions.

19.
World J Clin Cases ; 12(7): 1326-1332, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38524524

ABSTRACT

BACKGROUND: Cellular myofibroma is a rare subtype of myofibroma that was first described in 2017. Its diagnosis is often challenging because of its relative rarity, lack of known genetic abnormalities, and expression of muscle markers that can be confused with sarcomas that have myogenic differentiation. Currently, scholars have limited knowledge of this disease, and published cases are few. Further accumulation of diagnostic and treatment experiences is required. CASE SUMMARY: A 16-year-old girl experienced left upper limb swelling for 3 years. She sought medical attention at a local hospital 10 months ago, where magnetic resonance imaging revealed a 5-cm soft tissue mass. Needle biopsy performed at a local hospital resulted in the diagnosis of a spindle cell soft tissue sarcoma. The patient was referred to our hospital for limb salvage surgery with endoprosthetic replacement. She was initially diagnosed with a synovial sarcoma. Consequently, clinical management with chemotherapy was continued for the malignant sarcoma. Our pathology department also performed fluorescence in situ hybridization for result validation, which returned negative for SS18 gene breaks, indicating that it was not a synovial sarcoma. Next-generation sequencing was used to identify the SRF-RELA rearrangement. The final pathological diagnosis was a cellular/myofibroblastic neoplasm with an SRF-RELA gene fusion. The patient had initially received two courses of chemotherapy; however, chemotherapy was discontinued after the final diagnosis. CONCLUSION: This case was misdiagnosed because of its rare occurrence, benign biological behavior, and pathological similarity to soft tissue sarcoma.

20.
Ecotoxicol Environ Saf ; 274: 116231, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38503102

ABSTRACT

Deposition of potentially toxic elements (PTEs) in soils due to different types of mining activities has been an increasingly important concern worldwide. Quantitative differences of soil PTEs contamination and related health risk among typical mines remain unclear. Herein, data from 110 coal mines and 168 metal mines across China were analyzed based on 265 published literatures to evaluate pollution characteristics, spatial distribution, and probabilistic health risks of soil PTEs. The results showed that PTE levels in soil from both mine types significantly exceeded background values. The geoaccumulation index (Igeo) revealed metal-mine soil pollution levels exceeded those of coal mines, with average Igeo values for Cd, Hg, As, Pb, Cu, and Zn being 3.02-15.60 times higher. Spearman correlation and redundancy analysis identified natural and anthropogenic factors affecting soil PTE contamination in both mine types. Mining activities posed a significant carcinogenic risk, with metal-mine soils showing a total carcinogenic risk an order of magnitude higher than in coal-mine soils. This study provides policymakers a quantitative foundation for developing differentiated strategies for sustainable remediation and risk-based management of PTEs in typical mining soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Coal/analysis , Environmental Monitoring/methods , Environmental Pollution/analysis , Soil , Risk Assessment/methods , China , Soil Pollutants/analysis , Cadmium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...