Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(13): 134720, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37031125

ABSTRACT

The ZnO/GaN heterojunctions are extensively investigated now, owing to their good luminescent properties and devisable capability to form efficient hybrid structures. An electron-blocking layer inserted into heterojunctions can greatly change their properties. In this work, n-ZnO/ß-InxGa2-xO3/p-GaN heterojunctions have been successfully formed using atomic layer deposition methods. We show that the doping of In can effectively tune the band edges of the heterojunctions. First-principle calculations reveal that the bandgap of bulk ß-InxGa2-xO3 shrinks linearly with the increase in In contents, accompanied by an upward movement of the valence band maximum and a downward movement of the conduction band minimum. As the indium concentrations increase, the valence band offsets show an upward movement at both the InxGa2-xO3/GaN and ZnO/InxGa2-xO3 interfaces, while the conduction band offsets present different trends. A broad, reddish yellow-green emission appears after In doping, which verifies the effect of band alignment. What is more, we show that the amorphization of InxGa2-xO3 can play an important role in tuning the band edge. This work provides access to a series of band offsets tunable heterojunctions and can be used for the further design of direct white light-emitting diodes without any phosphors, based on this structure.

2.
Phys Chem Chem Phys ; 24(12): 7512-7520, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35289820

ABSTRACT

Elemental two-dimensional (2D) materials have attracted extraordinary interest compared with other 2D materials over the past few years. Fifteen elements from group IIIA to VIA have been discussed experimentally or theoretically for the formation of 2D monolayers, and the remaining few elements still need to be identified. Here, using first-principles calculations within density functional theory (DFT) and ab initio molecular dynamics simulations (AIMDs), we demonstrated that polonium can form stable 2D monolayers (MLs) with a 1T-MoS2-like structure. The band structure calculations revealed that polonium monolayers possess strong semiconducting properties with a band gap of ∼0.9 eV, and such semiconducting properties can well sustain up to a thickness of 4 MLs with a bandgap of ∼0.1 eV. We also found that polonium monolayers can be achieved through a spontaneous phase transition of ultrathin films with magic thicknesses, resulting in a weaker van der Waals interaction of ∼32 meV Å-2 between each three atomic layers. Also, the underlying physics comes from layered Peierls-like distortion driven by strong quantum size effects. Based on these intriguing findings, a suitable substrate on which the polonium monolayer can be grown through an epitaxial growth technique is proposed for further experiments. Our work not only extends completely the puzzle of elemental 2D monolayer materials from group IIIA to VIA, but also presents a new formation mechanism of 2D materials beyond the database of bulk materials with layered van der Waals interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...