Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.546
Filter
1.
Theor Appl Genet ; 137(6): 145, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822827

ABSTRACT

KEY MESSAGE: qLA3.1, controlling leaf angle in tomato, was fine-mapped to an interval of 4.45 kb on chromosome A03, and one gene encoding auxin response factor was identified as a candidate gene. Leaf angle is a crucial trait in plant architecture that plays an important role in achieving optimal plant structure. However, there are limited reports on gene localization, cloning, and the function of plant architecture in horticultural crops, particularly regarding leaf angle. In this study, we selected 'Z3' with erect leaves and 'Heinz1706' with horizontal leaves as the phenotype and cytological observation. We combined bulked segregant analysis and fine genetic mapping to identify a candidate gene, known as, i.e., qLA3.1, which was related to tomato leaf angle. Through multiple analyses, we found that Solyc03g113410 was the most probably candidate for qLA3.1, which encoded the auxin response factor SlARF11 in tomato and was homologous to OsARF11 related to leaf angle in rice. We discovered that silencing SlARF11 resulted in upright leaves, while plants with over-expressed SlARF11 exhibited horizontal leaves. We also found that cultivars with erect leaves had a mutation from base G to base A. Moreover, quantitative analysis of plants treated with hormones indicated that SlARF11 might participate in cell elongation and the activation of genes related to auxin and brassinosteroid pathways. Transcriptome analysis further validated that SlARF11 may regulate leaf angle through hormone signaling pathways. These data support the idea that the auxin response factor SlARF11 may have an important function in tomato leaf petiole angles.


Subject(s)
Chromosome Mapping , Phenotype , Plant Leaves , Plant Proteins , Quantitative Trait Loci , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant
2.
Sci Total Environ ; : 173614, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823708

ABSTRACT

Gully is a prominent indicator of land degradation in agroecosystems, functioning as a crucial pathway connecting upslopes to downstream channels. However, little is known about how gully regulates runoff, sediment, and nutrient loss processes in the catchment during snowmelt. In this study, we monitored these processes in situ at both the gully head (the upslope accumulated catchment of the gully head, CGH) and outlet of two representative and typical gully-dominated catchments (F1 and F2) during snowmelt in Mollisols region of Northeast China. Our results showed that runoff discharge of CGH and outlet exhibited a multi-peak trend during snowmelt, driven by the transition from snow melting to soil thawing. This transition resulted in distinct runoff patterns in both CGH and outlet, with significant differences in their response to air temperature. The total runoff yield of CGH accounted for 57.8 % in F1 and 40.6 % in F2 of the total runoff yield of the outlet. Notably, the peak sediment concentration displayed a marked lag compared to the peak runoff discharge, primarily dominated by the increased sensitivity of gully erosion after the thawing of gully slopes. Gully erosion was the main source of sediment yield in the catchment, contributing 98.2 % in F1 and 96.6 % in F2. Furthermore, nutrient concentrations exhibited a decreasing trend during snowmelt. The comparison of high nutrient concentrations in CGH and relatively low nutrient concentrations in outlet highlighted the gully's role in intercepting and diluting runoff nutrients. Hysteresis analysis confirmed the differential contribution of CGH and gully to nutrient sources. CGH accounting for 50.9 % and 93.3 % of runoff TN and runoff TP loss, while contributing only 8.3 % and 5.8 % to sediment TN and sediment TP loss, respectively. These findings offer valuable insights for effective erosion control and nonpoint source pollution management in gully-dominated agroecosystems during snowmelt.

3.
Carbohydr Polym ; 339: 122214, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823900

ABSTRACT

The polysaccharide, RGP2, was isolated from Russula griseocarnosa and its immunostimulatory effects were confirmed in cyclophosphamide (CTX)-induced immunosuppressed mice. Following purification via chromatography, structural analysis revealed that RGP2 had a molecular weight of 11.82 kDa and consisted of glucose (Glc), galactose (Gal), mannose, glucuronic acid and glucosamine. Bond structure analysis and nuclear magnetic resonance characterization confirmed that the main chain of RGP2 was formed by →6)-ß-D-Glcp-(1→, →3)-ß-D-Glcp-(1→ and →6)-α-D-Galp-(1→, which was substituted at O-3 of →6)-ß-D-Glcp-(1→ by ß-D-Glcp-(1→. RGP2 was found to ameliorate pathological damage in the spleen and enhance immune cell activity in immunosuppressed mice. Based on combined multiomics analysis, RGP2 altered the abundance of immune-related microbiota (such as Lactobacillus, Faecalibacterium, and Bacteroides) in the gut and metabolites (uridine, leucine, and tryptophan) in the serum. Compared with immunosuppressed mice, RGP2 also restored the function of antigen-presenting cells, promoted the polarization of macrophages into the M1 phenotype, positively affected the differentiation of helper T cells, and inhibited regulatory T cell differentiation through the protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, ultimately exerting an immune boosting function. Overall, our findings highlight therapeutic strategies to alleviate CTX-induced immunosuppression in a clinical setting.


Subject(s)
Basidiomycota , Cell Differentiation , Glucans , Animals , Mice , Basidiomycota/chemistry , Glucans/chemistry , Glucans/pharmacology , Glucans/isolation & purification , Cell Differentiation/drug effects , T-Lymphocytes/drug effects , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Male , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Cyclophosphamide/pharmacology , Mice, Inbred BALB C , Gastrointestinal Microbiome/drug effects
4.
Cancer Med ; 13(11): e7326, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826114

ABSTRACT

BACKGROUND: Optimal adjuvant chemotherapy after laparoscopic surgery in gastric cancer (GC) patients is still undefined. We aimed to evaluate the efficacy of S-1 plus oxaliplatin (SOX) and capecitabine plus oxaliplatin (CAPOX) in patients with GC after laparoscopic gastrectomy. METHODS: A non-inferiority randomized controlled clinical trial was performed in China. Patients with advanced GC who underwent laparoscopic D2 gastrectomy were randomly assigned to receive SOX and CAPOX regimens. RESULTS: In total, 191 patients were screened between May 2018 and June 2019, and 140 (73.3%) were included in the modified intent-to-treat analysis (mITT), of whom 69 and 71 were assigned to the SOX and CAPOX groups, respectively. The SOX group had similar 3-year overall survival (OS) and disease-free survival to the CAPOX group. Subgroup analysis revealed significantly better OS in the SOX group for male patients ([HR] = 0.395; 95% [CI], 0.153-1.019; p = 0.045), age >60 (HR = 0.219; 95% [CI], 0.064-0.753; p = 0.016), tumors in the gastric antrum (HR = 0.273; 95% [CI], 0.076-0.981; p = 0.047), and moderately differentiated tumors (HR = 0.338; 95% [CI], 0.110-1.041; p = 0.041). There were no significant differences observed in terms of adverse events and recurrence patterns between the two groups. CONCLUSION: Adjuvant SOX was non-inferior to CAPOX treatments for patients with GC who underwent curative laparoscopic D2 gastrectomy. For male patients, aged >60 years, tumors in the gastric antrum, and moderately differentiated tumors, adjuvant SOX may achieve an improvement compared with CAPOX.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Capecitabine , Drug Combinations , Gastrectomy , Laparoscopy , Oxaliplatin , Oxonic Acid , Stomach Neoplasms , Tegafur , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Male , Gastrectomy/methods , Female , Middle Aged , Laparoscopy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Oxaliplatin/therapeutic use , Oxaliplatin/administration & dosage , Tegafur/therapeutic use , Tegafur/administration & dosage , Oxonic Acid/therapeutic use , Oxonic Acid/administration & dosage , Chemotherapy, Adjuvant/methods , Capecitabine/administration & dosage , Capecitabine/therapeutic use , Aged , Adult
5.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829215

ABSTRACT

Trans-impedance amplifier (TIA) based capacitance-voltage (C-V) readout circuits are widely used in micro-machined gyroscopes' control system. In this work, the noise performance of a TIA and charge sensitive amplifier (CSA) based C-V readout circuit is analyzed in detail. The theoretical derivation and simulation experiments carried out in this paper show that the thermal noise of high value feedback resistors in TIA dominates the output noise of the circuit, while a CSA-based readout circuit can overcome this shortcoming. Then, a CSA-based C-V readout circuit is designed with a 1.8 V transistor on a 180 nm complementary metal-oxide-semiconductor. This C-V-based readout circuit occupies an area of 0.039 mm2, which is smaller than the area of a 0603 package resistor. When 1 V bias voltage (Vb) is added to the capacitors under test, the tested C-V gain of this circuit is as high as 225 dB, and the tested output noise of the circuit is less than 150 nV/Hz. Finally, the fabricated chip achieved a resolution of 840 zF/Hz at Vb as low as 1 V. This CSA-based C-V readout circuit has more advantages in terms of noise and area over the TIA circuit and is more suitable for integration into the interface integrated circuit for micro-gyroscopes.

6.
Article in English | MEDLINE | ID: mdl-38829488

ABSTRACT

BACKGROUND: This study aimed to estimate the prevalence of achieving the secondary prevention targets recommended in the World Health Organization (WHO) guidelines for cardiovascular disease (CVD) in 38 low-income and middle-income countries (LMICs). METHODS: We pooled nationally representative cross-sectional surveys from 38 LMICs between 2013 and 2020. Treatment, metabolic and lifestyle targets were assessed for individuals with a self-reported history of CVD according to WHO's recommendations. Associations between the prevalence of guideline adherence and sociodemographic characteristics were assessed using multivariate Poisson regression models. RESULTS: The pooled sample included 126 106 participants, of whom 9821 (6.8% [95% CI 6.4-7.2]) reported a history of CVD. Overall, the prevalence of achieving treatment targets in patients with CVD was 22.7% (95% CI, 21.0-24.5%) for antihypertensive drugs, 19.6% (17.9-21.4%) for aspirin, and 13.6% (12.0-15.44%) for statins. The prevalence of achieving metabolic targets was 54.9% (52.5-57.3%) for BMI, 39.9% (37.7-42.2%) for blood pressure, 46.1% (43.6-48.6%) for total cholesterol, and 84.9% (83.1-86.5%) for fasting blood glucose. The prevalence of achieving lifestyle targets was 83.2% (81.5-84.7%) for not smoking, 83.1% (81.2-84.9%) for not drinking, 65.5% (63.1-67.7%) for sufficient physical activity and 16.2% (14.5-18.0%) for healthy diet. Only 6.1% (5.1-7.4%) achieved three treatment targets, 16.0% (14.3-17.9%) achieved four metabolic targets, and 6.9% (5.8-8.0%) achieved four lifestyle targets. Upper-middle income countries were better than low-income countries at achieving the treatment, non-drinking and dietary targets. Being younger and female were associated with poorer achievement of metabolic targets. CONCLUSION: In LMICs, achieving the targets recommended in the guideline for treatment, metabolism and healthy lifestyles for patients with CVD is notably low. This highlights an urgent need for effective, systematic secondary prevention strategies to improve CVD management.

7.
PeerJ ; 12: e17473, 2024.
Article in English | MEDLINE | ID: mdl-38827312

ABSTRACT

Background: Zinc (Zn) is a vital micronutrient essential for plant growth and development. Transporter proteins of the ZRT/IRT-like protein (ZIP) family play crucial roles in maintaining Zn homeostasis. Although the acquisition, translocation, and intracellular transport of Zn are well understood in plant roots and leaves, the genes that regulate these pathways in fruits remain largely unexplored. In this study, we aimed to investigate the function of SlZIP11 in regulating tomato fruit development. Methods: We used Solanum lycopersicum L. 'Micro-Tom' SlZIP11 (Solanum lycopersicum) is highly expressed in tomato fruit, particularly in mature green (MG) stages. For obtaining results, we employed reverse transcription-quantitative polymerase chain reaction (RT-qPCR), yeast two-hybrid assay, bimolecular fluorescent complementation, subcellular localization assay, virus-induced gene silencing (VIGS), SlZIP11 overexpression, determination of Zn content, sugar extraction and content determination, and statistical analysis. Results: RT-qPCR analysis showed elevated SlZIP11 expression in MG tomato fruits. SlZIP11 expression was inhibited and induced by Zn deficiency and toxicity treatments, respectively. Silencing SlZIP11 via the VIGS technology resulted in a significant increase in the Zn content of tomato fruits. In contrast, overexpression of SlZIP11 led to reduced Zn content in MG fruits. Moreover, both silencing and overexpression of SlZIP11 caused alterations in the fructose and glucose contents of tomato fruits. Additionally, SlSWEEET7a interacted with SlZIP11. The heterodimerization between SlSWEET7a and SlZIP11 affected subcellular targeting, thereby increasing the amount of intracellularly localized oligomeric complexes. Overall, this study elucidates the role of SlZIP11 in mediating Zn accumulation and sugar transport during tomato fruit ripening. These findings underscore the significance of SlZIP11 in regulating Zn levels and sugar content, providing insights into its potential implications for plant physiology and agricultural practices.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Plant Proteins , Solanum lycopersicum , Zinc , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Zinc/metabolism , Zinc/analysis , Fruit/metabolism , Fruit/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Microb Cell Fact ; 23(1): 162, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824548

ABSTRACT

BACKGROUND: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS: An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 µM (26.2 mg/L). CONCLUSION: Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.


Subject(s)
Biocatalysis , Escherichia coli , Gallic Acid , Metabolic Engineering , Gallic Acid/metabolism , Gallic Acid/analogs & derivatives , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Engineering/methods , Methyltransferases/metabolism , Methyltransferases/genetics , Shikimic Acid/metabolism , Pseudomonas fluorescens/metabolism , Pseudomonas fluorescens/enzymology , Pseudomonas fluorescens/genetics , Biotransformation
9.
BMC Cancer ; 24(1): 671, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824581

ABSTRACT

BACKGROUND: The role of novel circular RNAs (circRNAs) in colorectal cancer (CRC) remains to be determined. This study aimed to identify a novel circRNA involved in CRC pathogenesis, assess its diagnostic value, and construct a regulatory network. METHODS: Differential expression analysis was conducted using circRNA datasets to screen for differentially expressed circRNAs. The expression of selected circRNAs was validated in external datasets and clinical samples. Diagnostic value of plasma circRNA levels in CRC was assessed. A competing endogenous RNA (ceRNA) network was constructed for the circRNA using TCGA dataset. RESULTS: Analysis of datasets revealed that hsa_circ_101303 was significantly overexpressed in CRC tissues compared to normal tissues. The upregulation of hsa_circ_101303 in CRC tissues was further confirmed through the GSE138589 dataset and clinical samples. High expression of hsa_circ_101303 was associated with advanced N stage, M stage, and tumor stage in CRC. Plasma levels of hsa_circ_101303 were markedly elevated in CRC patients and exhibited moderate diagnostic ability for CRC (AUC = 0.738). The host gene of hsa_circ_101303 was also found to be related to the TNM stage of CRC. Nine miRNAs were identified as target miRNAs for hsa_circ_101303, and 27 genes were identified as targets of these miRNAs. Subsequently, a ceRNA network for hsa_circ_101303 was constructed to illustrate the interactions between the nine miRNAs and 27 genes. CONCLUSIONS: The study identifies hsa_circ_101303 as a highly expressed circRNA in CRC, which is associated with the progression of the disease. Plasma levels of hsa_circ_101303 show promising diagnostic potential for CRC. The ceRNA network for hsa_circ_101303 provides valuable insights into the regulatory mechanisms underlying CRC.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs , RNA, Circular , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , RNA, Circular/genetics , RNA, Circular/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Male , Female , MicroRNAs/genetics , MicroRNAs/blood , Middle Aged , Gene Expression Profiling , Neoplasm Staging
10.
iScience ; 27(6): 109966, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832014

ABSTRACT

Ambitious action plans have been launched to address climate change and air pollution. Through coupling the IMED|CGE, GAINS, and IMED|HEL models, this study investigate the impacts of implementing carbon neutrality and clean air policies on the energy-environment-health-economy chain in the Beijing-Tianjin-Hebei-Henan-Shandong-Shanxi region of China. Results show that Shandong holds the largest reduction in energy consumption and carbon emissions toward the 1.5°C target. Shandong, Henan, and Hebei are of particularly prominent pollutant reduction potential. Synergistic effects of carbon reduction on decreasing PM2.5 concentration will increase in the future, specifically in energy-intensive regions. Co-deployment of carbon reduction and end-of-pipe technologies are beneficial to decrease PM2.5-related mortalities and economic loss by 4.7-12.9% in 2050. Provincial carbon reduction cost will be higher than monetary health benefits after 2030, indicating that more zero-carbon technologies should be developed. Our findings provide scientific enlightenment on policymaking toward achieving carbon reduction and pollution mitigation from multiple perspectives.

11.
J Microbiol Biotechnol ; 34(6): 1-8, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38693045

ABSTRACT

Bacterial resistance to commonly used antibiotics is one of the major challenges to be solved today. Bacteriophage endolysins (Lysins) have become a hot research topic as a new class of antibacterial agents. They have promising applications in bacterial infection prevention and control in multiple fields, such as livestock and poultry farming, food safety, clinical medicine and pathogen detection. However, many phage endolysins display low bactericidal activities, short half-life and narrow lytic spectrums. Therefore, some methods have been used to improve the enzyme properties (bactericidal activity, lysis spectrum, stability and targeting the substrate, etc) of bacteriophage endolysins, including deletion or addition of domains, DNA mutagenesis, chimerization of domains, fusion to the membrane-penetrating peptides, fusion with domains targeting outer membrane transport systems, encapsulation, the usage of outer membrane permeabilizers. In this review, research progress on the strategies for improving their enzyme properties are systematically presented, with a view to provide references for the development of lysins with excellent performances.

12.
Food Chem X ; 22: 101395, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38694544

ABSTRACT

Xinyu mandarin is popular for its good flavor, but its flavor deteriorates during postharvest storage. To better understand the underlying basis of this change, the dynamics of the sensory profiles were investigated throughout fruit ripening and storage. Sweetness and sourness, determined especially by sucrose and citric acid content, were identified as the key sensory factors in flavor establishment during ripening, but not in flavor deterioration during storage. Postharvest flavor deterioration is mainly attributed to the reduction of retronasal aroma and the development of off-flavor. Furthermore, sugars, acids and volatile compounds were analyzed. Among the 101 detected volatile compounds, 10 changed significantly during the ripening process. The concentrations of 15 volatile components decreased during late postharvest storage, among which α-pinene and d-limonene were likely to play key roles in the reduction of aroma. Three volatile compounds were found to increase during storage, associated with off-flavor development.

13.
J Neurointerv Surg ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697808

ABSTRACT

BACKGROUND: The relationship between post-endovascular thrombectomy (EVT) blood pressure (BP) and outcomes in patients with acute ischemic stroke (AIS) remains contentious. We aimed to explore whether this association differs with different cerebral perfusion statuses post-EVT. METHODS: In a multicenter observational study of patients with AIS with large vessel occlusion who underwent EVT, we enrolled those who accepted CT perfusion (CTP) imaging within 24 hours post-EVT. We recorded post-EVT systolic (SBP) and diastolic BP. Patients were stratified into favorable perfusion and unfavorable perfusion groups based on the hypoperfusion intensity ratio (HIR) on CTP. The primary outcome was good functional outcome (90-day modified Rankin Scale score of ≤3). Secondary outcomes included early neurological deterioration, infarct size growth, and symptomatic intracranial hemorrhage. RESULTS: Of the 415 patients studied (mean age 62 years, 75% male), 233 (56%) achieved good functional outcomes. Logistic regression showed that post-EVT HIR and 24-hour mean SBP were significantly associated with functional outcomes. Among the 326 (79%) patients with favorable perfusion, SBP <140 mmHg was associated with a higher percentage of good functional outcomes compared with SBP ≥140 mmHg (68% vs 52%; aOR 1.70 (95% CI 1.00 to 2.89), P=0.04). However, no significant difference was observed between SBP and functional outcomes in the unfavorable perfusion group. There was also no discernible difference between SBP and secondary outcomes across the different perfusion groups. CONCLUSIONS: In patients with favorable perfusion post-EVT, SBP <140 mmHg was associated with good functional outcomes, which underscores the need for further investigations with larger sample sizes or a more individualized BP management strategy. CLINICAL TRIAL REGISTRATION: ChiCTR1900022154.

14.
Front Oncol ; 14: 1339511, 2024.
Article in English | MEDLINE | ID: mdl-38699646

ABSTRACT

The management of non-small cell lung cancer (NSCLC), specifically targeting the anaplastic lymphoma kinase (ALK) with tyrosine kinase inhibitors (TKIs), is challenged by the emergence of therapeutic resistance. Resistance mechanisms to ALK TKIs can be broadly classified into ALK-dependent and ALK-independent pathways. Here, we present a case with lung adenocarcinoma (LUAD) harboring an ALK rearrangement. The patient had developed resistance to sequential ALK TKI therapies, with an acquired ETV6-NTRK3 (E4:N14) fusion as a potential mechanism of ALK-independent resistance to lorlatinib. Subsequently, the patient was treated with the combination of brigatinib plus entrectinib and demonstrated a positive response, achieving an 8-month progression-free survival. Our case provides a potential treatment option for LUAD patients with ALK rearrangements and highlights the utility of next-generation sequencing (NGS) in uncovering genetic alterations that can guide the selection of effective treatment strategies.

15.
Article in English | MEDLINE | ID: mdl-38725241

ABSTRACT

BACKGROUND AND AIM: In this study, a deep learning algorithm was used to predict the survival rate of colon cancer (CC) patients, and compared its performance with traditional Cox regression. METHODS: In this population-based cohort study, we used the characteristics of patients diagnosed with CC between 2010 and 2015 from the Surveillance, Epidemiology and End Results (SEER) database. The population was randomized into a training set (n = 10 596, 70%) and a test set (n = 4536, 30%). Brier scores, area under the (AUC) receiver operating characteristic curve and calibration curves were used to compare the performance of the three most popular deep learning models, namely, artificial neural networks (ANN), deep neural networks (DNN), and long-short term memory (LSTM) neural networks with Cox proportional hazard (CPH) model. RESULTS: In the independent test set, the Brier values of ANN, DNN, LSTM and CPH were 0.155, 0.149, 0.148, and 0.170, respectively. The AUC values were 0.906 (95% confidence interval [CI] 0.897-0.916), 0.908 (95% CI 0.899-0.918), 0.910 (95% CI 0.901-0.919), and 0.793 (95% CI 0.769-0.816), respectively. Deep learning showed superior promising results than CPH in predicting CC specific survival. CONCLUSIONS: Deep learning showed potential advantages over traditional CPH models in terms of prognostic assessment and treatment recommendations. LSTM exhibited optimal predictive accuracy and has the ability to provide reliable information on individual survival and treatment recommendations for CC patients.

16.
Med Clin (Barc) ; 2024 May 04.
Article in English, Spanish | MEDLINE | ID: mdl-38705791
17.
J Neurovirol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709469

ABSTRACT

We aimed to examine the l differences in the assessment of neurocognitive impairment (NCI) using cognitive screening tools between PLWH and HIV-negative individuals and further compare the neurocognitive profiles between the two groups. This was baseline evaluation of Pudong HIV Aging Cohort, including 465 people living with HIV (PLWH) and 465 HIV-negative individuals aged over 50 years matched by age (± 3 years), sex and education. NCI was assessed using the Chinese version of Mini-mental State Examination (MMSE), the International HIV Dementia Scale (IHDS) and Beijing version of Montreal Cognitive Assessment (MoCA). In total, 258 (55.5%), 91 (19.6%), 273 (58.7%) of PLWH were classified as having NCI by the IHDS, MMSE and MoCA, compared to 90 (19.4%), 25 (5.4%), 135 (29.0%) of HIV-negative individuals, respectively (p < 0.05); such associations remained significant in multivariable analysis. PLWH showed a larger overlap of NCI detected by IHDS, MMSE, and MoCA. IHDS and MoCA detected almost all of the NCI detected by MMSE. IHDS-motor and psychomotor speeds and MoCA-executive function showed the greatest disparities between two groups. In multivariable analysis, older age and more depressive symptoms were positively associated with NCI regardless of the screening tools or HIV serostatus. PLWH over 50 years old display a higher prevalence of NCI and distinct neurocognitive profiles compared to HIV-negative individuals, despite viral suppression. Given the more considerable overlap in NCI classification in PLWH, it is advisable to choose one screening tool such as IHDS or MoCA to identify those potentially having NCI and then refer to more comprehensive neuropsychological assessment.

18.
PLoS One ; 19(5): e0298827, 2024.
Article in English | MEDLINE | ID: mdl-38722949

ABSTRACT

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Subject(s)
Adipocytes , Glutathione Peroxidase , MAP Kinase Signaling System , Animals , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Adipocytes/metabolism , Adipocytes/cytology , Swine , Cell Differentiation/genetics , Cell Proliferation , Adipogenesis/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
19.
Eur Heart J Case Rep ; 8(5): ytae189, 2024 May.
Article in English | MEDLINE | ID: mdl-38711681

ABSTRACT

Background: Myocardial fibrosis is a key pathological factor for the occurrence of ventricular arrhythmias in hypertrophic obstructive cardiomyopathy (HOCM). Case summary: This case series reports on two patients diagnosed with HOCM who underwent 18F-fibroblast activation protein inhibitor (FAPI) positron-emission tomography/computed tomography imaging and Morrow myotomy procedure. The collected myocardial tissue was examined histopathologically. Both patients exhibited intense and heterogeneous 18F-FAPI uptake in the septum, with significant number of activated fibroblasts. Discussion: Enhanced 18F-FAPI uptake was observed before irreversible fibrosis, and the degree of 18F-FAPI uptake was higher in tissue with greater fibrosis. 18F-FAPI imaging may provide a promising tool for guiding surgical strategy in HOCM, and further research is needed to fully explore its potential in clinical practice.

20.
Expert Opin Drug Saf ; : 1-8, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38778731

ABSTRACT

BACKGROUND: The study aims to obtain the real-world safety profile of tetracyclines in children younger than 8 years old and provide reference for clinical drug applications. RESEARCH DESIGN AND METHODS: We made a disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database through OpenVigil 2 and conducted a review of case reports regarding adverse drug reactions (ADRs) of tetracyclines in children younger than 8-year-old. RESULTS: FAERS analysis identified 32 ADRs of tetracyclines in children younger than 8-year-old. Respiratory, thoracic, and mediastinal disorders contained the most frequent ADRs among all system organ classes (SOCs). The top three positive signals with the highest proportional reporting ratio (PRR) were laryngeal injury, Horner's syndrome and methaemoglobinaemia. Sixteen published tetracyclines-associated cases in children younger than 8-year-old were identified in the literature, concentrating in three SOCs. Gastrointestinal disorders were the most commonly reported cases (n = 12). CONCLUSIONS: Several ADRs were newly reported only in children younger than 8-year-old in our research, including Horner's syndrome and methemoglobinemia. We recommended that the clinical practitioners should pay attention to the ADRs both in instruction and beyond the label. Take close care of children and timely intervene when the treatment is inevitable.

SELECTION OF CITATIONS
SEARCH DETAIL
...