Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
ACS Appl Mater Interfaces ; 15(3): 3744-3759, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36630299

ABSTRACT

Inducing immunogenic cell death (ICD) is a critical strategy for enhancing cancer immunotherapy. However, inefficient and risky ICD inducers along with a tumor hypoxia microenvironment seriously limit the immunotherapy efficacy. Non-specific delivery is also responsible for this inefficiency. In this work, we report a drug-free bacteria-derived outer membrane vesicle (OMV)-functionalized Fe3O4-MnO2 (FMO) nanoplatform that realized neutrophil-mediated targeted delivery and photothermally enhanced cancer immunotherapy. In this system, modification of OMVs derived from Escherichia coli enhanced the accumulation of FMO NPs at the tumor tissue through neutrophil-mediated targeted delivery. The FMO NPs underwent reactive decomposition in the tumor site, generating manganese and iron ions that induced ICD and O2 that regulated the tumor hypoxia environment. Moreover, OMVs are rich in pathogen-associated pattern molecules that can overcome the tumor immunosuppressive microenvironment and effectively activate immune cells, thereby enhancing specific immune responses. Photothermal therapy (PTT) caused by MnO2 and Fe3O4 can not only indirectly stimulate systemic immunity by directly destroying tumor cells but also promote the enrichment of neutrophil-equipped nanoparticles by enhancing the inflammatory response at the tumor site. Finally, the proposed multi-modal treatment system with targeted delivery capability realized effective tumor immunotherapy to prevent tumor growth and recurrence.


Subject(s)
Bioengineering , Immunotherapy , Multifunctional Nanoparticles , Neoplasms , Humans , Cell Line, Tumor , Immunotherapy/methods , Multifunctional Nanoparticles/therapeutic use , Neoplasms/therapy , Tumor Microenvironment/immunology , Transport Vesicles/chemistry , Transport Vesicles/immunology , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/immunology , Escherichia coli
2.
J Biomed Nanotechnol ; 18(2): 352-368, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35484752

ABSTRACT

The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T2-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.


Subject(s)
Manganese Compounds , Neoplasms , Doxorubicin/pharmacology , Humans , Hyaluronic Acid , Magnetic Resonance Imaging , Manganese Compounds/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oxides , Tumor Microenvironment
3.
Ying Yong Sheng Tai Xue Bao ; 30(6): 2056-2062, 2019 Jun.
Article in Chinese | MEDLINE | ID: mdl-31257779

ABSTRACT

The endophytic bacteria were isolated from the roots of polycyclic aromatic hydrocarbon (PAHs)-tolerant plant. We investigated their ability of PAHs degradation and plant growth promo-ting, with the aim to provide theoretical support for bacterial-plant cooperative soil remediation. Kochia scoparia living in coking plant area were selected for strains isolation. Eight endophytic bacteria strains, which used pyrene and 1-aminocyclopropane-1-carboxylic acid (ACC) as sole carbon and nitrogen source, were isolated from the roots of K. scoparia. Three endophytic bacteria, KSE4, KSE7 and KSE8, displayed high degradation efficiency in pyrene degradation experiment. They were identified as Bacillus sp., Pseudomonas sp., and Sphingobacterium sp., respectively. The abili-ties of those three strains to produce ACC deaminase and their effects on seed germination of K. scoparia were examined under pyrene stress through liquid culture tests. The results showed that the activity of ACC deaminase decreased with increasing pyrene concentration (0-15 mg·L-1). KSE7 had the strongest promotion effect. When pyrene concentration reached to 15 mg·L-1, the germination rate and bud length of K. scoparia increased by 44.8% and 61.1%, respectively. Our results indicated that KSE7 is a promising bacterial strain for soil remediation in coking plant area.


Subject(s)
Bassia scoparia/metabolism , Biodegradation, Environmental , Plant Roots/microbiology , Pyrenes/metabolism , Soil Pollutants/metabolism , Bacteria , Polycyclic Aromatic Hydrocarbons
4.
Dalton Trans ; 47(4): 1202-1213, 2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29297915

ABSTRACT

Hydrothermal reactions of aromatic terphenyl-4,2'',5'',4'-tetracarboxylic acid (H4tta) and transitional metal cations in the presence of two flexible N-donor ancillary ligands afforded four novel coordination polymers, namely, {[Zn(tta)0.5(m-bimb)]·H2O}n (1), [Ni2(tta)(m-bimb)2(H2O)]n (2), [Ni(H2tta)(o-bimb)·H2O]n (3), and [Cd(tta)0.5(o-bimb)]n (4), from solvothermal reactions in the presence of bis(imidazole) bridging linkers (m-bimb = 1,3-bis(imidazol-1-ylmethyl)benzene, and o-bimb = 1,2-bis(imidazol-1-ylmethyl)benzene). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses (EA), powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Compound 1 displayed a 2-fold 3D → 3D parallel entangled (4,4)-connected bbf net with the point symbol of (64·82)(66)2. Compound 2 featured a predocumented 3D (4,8)-connected (32·53·6)(34·44·59·611) net. Compound 3 exhibited a 2D 4-connected sql sheet with the point symbol of (44·62), and compound 4 showed a 2D 4-connected (32·62·72) kgm sheet. To our delight, fluorescence measurements showed that compound 1 could selectively and sensitively detect Cr3+ cations and nitrobenzene derivatives (nitrobenzene (NB), p-nitrotoluene (PNT), and p-nitroaniline (PNA)), which suggested that CPs of 1 was a promising bifunctional luminescence sensor material that could sense metal ions and small organic molecules. Moreover, 1 showed excellent photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...