Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Front Pharmacol ; 15: 1378782, 2024.
Article in English | MEDLINE | ID: mdl-38716235

ABSTRACT

Background: Recurrent aphthous ulcer (RAU) had high prevalence and lacked widely recognized treatment. Total glucosides of paeony (TGP) was used in the treatment of RAU in recent years. This study was to summarize the efficacy and safety of TGP in the treatment of RAU. Methods: We searched eight commonly used databases for relevant studies that published before 1 November 2023. Primary outcome was visual analogue scale (VAS). Secondary outcomes included overall response rate, significant response rate, ulcer healing time, interval, number of ulcers, and serum inflammatory factors. We conducted the meta-analysis, assessed risk of bias and the confidence of the evidence, by using Stata 15.0, Review Manager 5.4, and Gradepro. Results: Nine randomized controlled trials (RCTs) encompassing 883 patients with RAU were included in the final analysis. The VAS in the TGP group was lower than that in the control group (MD = -1.18, 95% CI = -1.58 to -0.78, p < 0.001, moderate-certainty evidence), subgroup analysis suggested longer (>8 weeks) medication and observation led to a more significant reduction in pain (p = 0.02). Moreover, TGP had higher overall response rate (RR = 1.18, 95% CI = 1.04 to 1.33, p = 0.008, very low-certainty evidence) and significant response rate (RR = 1.72, 95% CI = 1.38 to 2.14, p < 0.001, very low-certainty evidence), accelerated ulcer healing (MD = -1.79, 95% CI = -2.67 to -0.91, p < 0.001, low-certainty evidence), and extended intervals (MD = 23.60, 95% CI = 14.17 to 33.03, p < 0.001, very low-certainty evidence). The efficacy of TGP in reducing the number of ulcers showed no significant difference compared to the control group (MD = -1.66, 95% CI = -3.60 to 0.28, p = 0.09, low-certainty evidence). Moreover, TGP treatment was associated with a higher incidence of abdominal symptoms (RR = 3.27, 95% CI = 1.62 to 6.60, p < 0.001). Conclusion: TGP appears to hold promise as a widely-used clinical therapeutic option for treating RAU. Nevertheless, further rigorous studies of high quality are required to validate its effectiveness. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=471154, Identifier CRD42023471154.

2.
BMC Complement Med Ther ; 24(1): 202, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783288

ABSTRACT

BACKGROUND: 6-Methoxydihydrosanguinarine (6-MDS) has shown promising potential in fighting against a variety of malignancies. Yet, its anti­lung adenocarcinoma (LUAD) effect and the underlying mechanism remain largely unexplored. This study sought to explore the targets and the probable mechanism of 6-MDS in LUAD through network pharmacology and experimental validation. METHODS: The proliferative activity of human LUAD cell line A549 was evaluated by Cell Counting Kit-8 (CCK8) assay. LUAD related targets, potential targets of 6-MDS were obtained from databases. Venn plot analysis were performed on 6-MDS target genes and LUAD related genes to obtain potential target genes for 6-MDS treatment of LUAD. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was utilized to perform a protein-protein interaction (PPI) analysis, which was then visualized by Cytoscape. The hub genes in the network were singled out by CytoHubba. Metascape was employed for GO and KEGG enrichment analyses. molecular docking was carried out using AutoDock Vina 4.2 software. Gene expression levels, overall survival of hub genes were validated by the GEPIA database. Protein expression levels, promotor methylation levels of hub genes were confirmed by the UALCAN database. Timer database was used for evaluating the association between the expression of hub genes and the abundance of infiltrating immune cells. Furthermore, correlation analysis of hub genes expression with immune subtypes of LUAD were performed by using the TISIDB database. Finally, the results of network pharmacology analysis were validated by qPCR. RESULTS: Experiments in vitro revealed that 6-MDS significantly reduced tumor growth. A total of 33 potential targets of 6-MDS in LUAD were obtained by crossing the LUAD related targets with 6-MDS targets. Utilizing CytoHubba, a network analysis tool, the top 10 genes with the highest centrality measures were pinpointed, including MMP9, CDK1, TYMS, CCNA2, ERBB2, CHEK1, KIF11, AURKB, PLK1 and TTK. Analysis of KEGG enrichment hinted that these 10 hub genes were located in the cell cycle signaling pathway, suggesting that 6-MDS may mainly inhibit the occurrence of LUAD by affecting the cell cycle. Molecular docking analysis revealed that the binding energies between 6-MDS and the hub proteins were all higher than - 6 kcal/Mol with the exception of AURKB, indicating that the 9 targets had strong binding ability with 6-MDS.These results were corroborated through assessments of mRNA expression levels, protein expression levels, overall survival analysis, promotor methylation level, immune subtypes andimmune infiltration. Furthermore, qPCR results indicated that 6-MDS can significantly decreased the mRNA levels of CDK1, CHEK1, KIF11, PLK1 and TTK. CONCLUSIONS: According to our findings, it appears that 6-MDS could possibly serve as a promising option for the treatment of LUAD. Further investigations in live animal models are necessary to confirm its potential in fighting cancer and to delve into the mechanisms at play.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Molecular Docking Simulation , Network Pharmacology , Humans , Lung Neoplasms/drug therapy , Adenocarcinoma of Lung/drug therapy , A549 Cells , Isoquinolines/pharmacology , Isoquinolines/chemistry , Protein Interaction Maps , Cell Proliferation/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38557678

ABSTRACT

Disease ontologies facilitate the semantic organization and representation of domain-specific knowledge. In the case of prostate cancer (PCa), large volumes of research results and clinical data have been accumulated and needed to be standardized for sharing and translational researches. A formal representation of PCa-associated knowledge will be essential to the diverse data standardization, data sharing and the future knowledge graph extraction, deep phenotyping and explainable artificial intelligence developing. In this study, we constructed an updated PCa ontology (PCAO2) based on the ontology development life cycle. An online information retrieval system was designed to ensure the usability of the ontology. The PCAO2 with a subclass-based taxonomic hierarchy covers the major biomedical concepts for PCa-associated genotypic, phenotypic and lifestyle data. The current version of the PCAO2 contains 633 concepts organized under three biomedical viewpoints, namely, epidemiology, diagnosis and treatment. These concepts are enriched by the addition of definition, synonym, relationship and reference. For the precision diagnosis and treatment, the PCa-associated genes and lifestyles are integrated in the viewpoint of epidemiological aspects of PCa. PCAO2 provides a standardized and systematized semantic framework for studying large amounts of heterogeneous PCa data and knowledge, which can be further, edited and enriched by the scientific community. The PCAO2 is freely available at https://bioportal.bioontology.org/ontologies/PCAO, http://pcaontology.net/ and http://pcaontology.net/mobile/.


Subject(s)
Biological Ontologies , Prostatic Neoplasms , Humans , Male , Artificial Intelligence , Semantics , Prostatic Neoplasms/genetics
4.
J Photochem Photobiol B ; 255: 112907, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677259

ABSTRACT

OBJECTIVE: The objective of this study is to investigate the variances in transcriptome gene expression of normal oral mucosa-derived mesenchymal stem cell (OM-MSC), oral leukoplakia-derived MSC (OLK-MSC) and oral squamous cell carcinoma-derived MSC(OSCC-MSC). as Additionally, the study aims to compare the in vitro proliferation, migration, invasion ability, and response to photodynamic therapy (PDT) of these three MSC, HOK, DOK, leuk1, and Cal27 cell lines. METHODS: HOK, DOK, leuk1, Cal27 cells were cultured in vitro. 3 MSC cells were obtained from OM, OLK, OSCC tissue (n = 3) and identified through flow cytometry. They were also cultured in vitro for osteogenic and lipogenic-induced differentiation. Based on the Illumina HiSeq high-throughput sequencing platform, OM-MSC, OLK-MSC, OSCC-MSC (n = 3) were subjected to transcriptome sequencing, functional annotation, and enrichment analysis of differentially expressed genes and related genes. CCK8 assay, wound healing assay, and transwell assay were performed to compare the proliferation, migration, and invasion of the seven types of cells. The 7 cells were incubated with 0, 0.125 mM, 0.25 mM, 0.5 mM, 1 mM, and 2 mM of the photosensitizer (5-aminolevulinic acid, 5-ALA) in vitro. Subsequently, they were irradiated with a 150 mM, 635 nm laser for 1 min, and the cell activity was detected using the CCK8 assay after 24 h. The mitochondrial changes in the 7 cells before and after the treatment of PDT were detected using the JC-10 probe, and the changes in ATP content were measured before and after the PDT treatment. RESULTS: OM-MSC, OLK-MSC, and OSCC-MSC expressed positive MSC surface markers. After osteogenic and lipogenic-induced differentiation culture, stained calcium nodules and lipid droplets were visible, meeting the identification criteria of MSC. Pathway enrichment analysis revealed that the differentially expressed genes (DEGs) of OSCC-MSC compared to OLK-MSC were primarily associated with the PI3K-Akt signaling pathway and tumor-related pathways. OSCC-MSC exhibited stronger migratory and invasive abilities compared to Cal27. The IC50 values required for OM, OLK, and OSCC-derived MSC were lower than those required for epithelial cells treated with PDT, which were 1.396 mM, 0.9063 mM, and 2.924 mM, respectively. Cell membrane and mitochondrial disruption were observed in seven types of cells after 24 h of PDT treatment. However, HOK, DOK, leuk1, and Cal27 cells had an ATP content increased. CONCLUSIONS: OLK, OSCC epithelial cells require higher concentrations of 5-ALA for PDT treatment than MSC of the same tissue origin. The concentration of 5-ALA required increases with increasing cell malignancy. Differences in the response of epithelial cells and MSC to PDT treatment may have varying impacts on OLK recurrence and malignancy.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Epithelial Cells , Leukoplakia, Oral , Mesenchymal Stem Cells , Mouth Mucosa , Mouth Neoplasms , Photochemotherapy , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mouth Mucosa/pathology , Mouth Mucosa/cytology , Leukoplakia, Oral/pathology , Leukoplakia, Oral/therapy , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Movement/drug effects , Cell Movement/radiation effects , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/therapy , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Photosensitizing Agents/pharmacology , Cell Line, Tumor , Aminolevulinic Acid/pharmacology , Cell Differentiation/drug effects , Transcriptome/drug effects
5.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38425011

ABSTRACT

Bromine-containing domain protein 4 (BRD4) plays a crucial role in regulating transcription and genome stability. Selective inhibitors of BRD4-BD1 can specifically target specific bromine domains to affect cell proliferation, apoptosis, and differentiation. In this work, 43 selective benzoazepinone BRD4-BD1 inhibitors were studied using molecular simulations and three-dimensional quantitative conformation relationships (3D-QSAR). A reliable 3D-QSAR model was established based on COMFA (Q2 = 0.532, R2 = 0.981) and COMSIA (S + E + H (Q2 = 0.536, R2 = 0.979) two different analysis methods. Through 3D-QSAR model prediction and quantum chemical analysis, 15 small molecules with stronger inhibitory activity than the template compounds were constructed, and 5 new compounds with higher predictive activity and binding affinity were screened by molecular docking and ADMET methods. According to the molecular dynamics simulation, the key residues that can interact with BRD4-BD1 protein and molecular docking results are consistent, including ASN140, MET132, GLN85, MET105, ASN135 and TYR97. From the MD trajectory, we calculated and analyzed RMSD, RMSF, free binding energy, FECM, DCCM and PCA, the loop region formed by amino acids VAL45∼PRO62 showed α-helix, ß-folding and clustering towards the active center with the extension of simulation time. Further optimization of the structure of active candidate compounds A6, A11, A14, and A15 will provide the necessary theoretical basis for the synthesis and activity evaluation of novel BRD4-BD1 inhibitors.Communicated by Ramaswamy H. Sarma.

6.
Exp Ther Med ; 27(3): 121, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361513

ABSTRACT

It has been reported that the force of orthodontic correction triggers periodontal tissue remodeling by affecting angiogenesis. However, the manifestation of the vascular response to orthodontic tooth movement in the setting of chronic fluorosis is unclear. The aim of the present study was to preliminarily explore the effect of orthodontic treatment on the angiogenesis of gingival tissue in rats with chronic fluorosis by monitoring changes in the expression of vascular endothelial growth factor (VEGF), phosphatidylinositol-3 kinase (PI3K), AKT (or protein kinase B) and endothelial nitric oxide synthase (eNOS) in the gingival tissue. A total of 60 rats were randomly divided equally into the orthodontic group (O group; n=30) and fluorosis orthodontic group (FO group; n=30). Each of these groups was divided into 0-, 3-, 7-, 14- and 21-day groups (n=6/group). Fluorosis and orthodontic tooth movement models were established, and rats in each group were sacrificed for tissue sampling at the corresponding time points. Tissue morphology was observed via hematoxylin and eosin (H&E) staining. The protein and mRNA expression levels of VEGF, PI3K, AKT and eNOS in gingival tissue were detected by western blotting and reverse transcription-quantitative polymerase chain reaction, respectively. The H&E staining images showed that the FO group had smaller blood vessels and reduced vascular proliferation compared with the O group. Furthermore, the mRNA and protein expression levels of VEGF, PI3K, AKT and eNOS were reduced in the gingiva of rats in the FO group compared with the O group, and certain reductions were significant during the delayed tooth movement period. In addition, with the extension of the application of orthodontic stress, the mRNA and protein expression levels of VEGF, PI3K, AKT and eNOS in the gingiva of the O and FO groups showed a trend of increasing at first and subsequently decreasing, which corresponds with the tooth movement cycle. In conclusion, chronic fluorosis may inhibit the angiogenesis and the expression of the VEGF/PI3K/AKT/eNOS pathway in gingival tissue of orthodontic tooth movement.

7.
Anesthesiology ; 140(4): 765-785, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38118180

ABSTRACT

BACKGROUND: The role of nerve growth factor (NGF)/tyrosine kinase A receptor (TrKA) signaling, which is activated in a variety of pain states, in regulating membrane-associated δ-opioid receptor (mDOR) expression is poorly understood. The hypothesis was that elevated NGF in bone cancer tumors could upregulate mDOR expression in spinal cord neurons and that mDOR agonism might alleviate bone cancer pain. METHODS: Bone cancer pain (BCP) was induced by inoculating Lewis lung carcinoma cells into the femoral marrow cavity of adult C57BL/6J mice of both sexes. Nociceptive behaviors were evaluated by the von Frey and Hargreaves tests. Protein expression in the spinal dorsal horn of animals was measured by biochemical analyses, and excitatory synaptic transmission was recorded in miniature excitatory synaptic currents. RESULTS: The authors found that mDOR expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.18 ± 0.01 g vs. mean ± SD: 0.13 ± 0.01 g, n = 4, P < 0.001) and that administration of the DOR agonist deltorphin 2 (Del2) increased nociceptive thresholds (Del2 vs. vehicle, median [25th, 75th percentiles]: 1.00 [0.60, 1.40] g vs. median [25th, 75th percentiles]: 0.40 [0.16, 0.45] g, n = 10, P = 0.001) and reduced miniature excitatory synaptic current frequency in lamina II outer neurons (Del2 vs. baseline, mean ± SD: 2.21 ± 0.81 Hz vs. mean ± SD: 2.43 ± 0.90 Hz, n = 12, P < 0.001). Additionally, NGF expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.36 ± 0.03 vs. mean ± SD: 0.16 ± 0.02, n = 4, P < 0.001), and elevated NGF was associated with enhanced mDOR expression via TrKA signaling. CONCLUSIONS: Activation of mDOR produces analgesia that is dependent on the upregulation of the NGF/TrKA pathway by increasing mDOR levels under conditions of BCP in mice.


Subject(s)
Analgesia , Bone Neoplasms , Cancer Pain , Rats , Male , Female , Mice , Animals , Cancer Pain/drug therapy , Receptor Protein-Tyrosine Kinases , Rats, Sprague-Dawley , Nerve Growth Factor/metabolism , Mice, Inbred C57BL , Pain , Bone Neoplasms/complications , Spinal Cord Dorsal Horn , Receptors, Opioid
8.
Front Pharmacol ; 14: 1209075, 2023.
Article in English | MEDLINE | ID: mdl-37601076

ABSTRACT

Introduction: There has been a lack of treatments available to lower the frequency of recurrent aphthous ulcers (RAUs) until now. Total glucosides of paeony (TGP) is a botanical drug extracted from the dried roots of Paeonia lactiflora Pall. [Ranunculaceae; Paeoniae Radix Alba]. This study aims to evaluate the efficacy and safety of TGP in the treatment of RAU. Methods: This study was registered with the Chinese Clinical Trial Registry (ChiCTR1900025623). Patients were randomly assigned to the TGP or placebo group and treated with 1.8 g/day for 24 weeks. Participants were observed for a total of 36 weeks and were asked to record ulcer severity, medication, and adverse reactions in the form of diaries or apps every day. The primary outcome was the monthly ulcer-free interval. Results: A total of 79 individuals were enrolled, with 40 assigned to the TGP group and 39 to the placebo group. The dropout rate was 18.18%. In the TGP group, the monthly ulcer-free interval was significantly longer than baseline (median, 9.6 days) since weeks 13-24 (median, 18.5 days) (p < 0.05), and after discontinuation, it was further prolonged (median, 24.7 days) than in weeks 13-24 (p < 0.05). In addition, the monthly ulcer-free interval was longer in the TGP group than in the placebo group (median, 15.9 days) at weeks 25-36 (p < 0.001). There were better improvements in the monthly number of ulcers and monthly area of ulcers, and visual analog scoring in the TGP group at weeks 25-36 (p < 0.001). Conclusion: TGP had a good long-term therapeutic effect on RAU with frequent occurrence. Systematic Review Registration: www.chictr.org.cn, identifier ChiCTR1900025623.

11.
RSC Med Chem ; 14(6): 1172-1185, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37360398

ABSTRACT

Simultaneous inhibition of tumor vasculature and the glycolysis pathway may be a targeted anti-tumor strategy to inhibit tumor nutrient supply. Flavonoids are natural products with strong biological activity, which inhibit hypoxia induction factor 1α (HIF-1α) regulating glycolysis and tumor angiogenesis, while salicylic acid can reduce the glycolysis level of tumor cells by inhibiting related rate-limiting enzymes. A series of salicylic acid-modified indole trimethoxy-flavone derivatives were designed and synthesized by introducing benzotrimethoxy-structure commonly used in blood vessel blockers, and their anti-tumor activities were evaluated. Among them, compound 8f exhibited significant anti-proliferative activity against two hepatoma cells, HepG-2 and SMMC-7721, with IC50 values of 4.63 ± 1.13 µM and 3.11 ± 0.35 µM, respectively. Colony formation experiments also further verified its excellent in vitro anti-tumor activity. In addition, compound 8f showed the ability to induce apoptosis in SMMC-7721 cells in a concentration-dependent manner. After treatment with compound 8f, the expressions of the rate-limiting enzymes PKM2, PFKM, HK2 and tumor angiogenesis-related vascular endothelial growth factor of the glycolytic pathway were all down-regulated, and the lactate level in the hepatoma cell SMMC-7721 was significantly reduced. The morphology of the nucleus and tubulin was also observed to disperse gradually with the increase of compound 8f concentration. And compound 8f showed strong binding ability to tubulin. Our results suggest that the strategy of synthesizing the salicylic acid-modified indole flavone derivative 8f is a way to obtain active anti-tumor candidate compounds that may be further developed as targeted agents to inhibit tumor vasculature and glycolytic pathways.

12.
Biosensors (Basel) ; 13(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37232876

ABSTRACT

Alzheimer's disease (AD) is an irreversible neurodegenerative disease with clinical symptoms of memory loss and cognitive impairment. Currently, no effective drug or therapeutic method is available for curing this disease. The major strategy used is to identify and block AD at its initial stage. Thus, early diagnosis is very important for intervention of the disease and assessment of drug efficacy. The gold standards of clinical diagnosis include the measurement of AD biomarkers in cerebrospinal fluid and positron emission tomography imaging of the brain for amyloid-ß (Aß) deposits. However, these methods are difficult to apply to the general screening of a large aging population because of their high cost, radioactivity and inaccessibility. Comparatively, blood sample detection is less invasive and more accessible for the diagnosis of AD. Hence, a variety of assays based on fluorescence analysis, surface-enhanced Raman scattering, electrochemistry, etc., were developed for the detection of AD biomarkers in blood. These methods play significant roles in recognizing asymptomatic AD and predicting the course of the disease. In a clinical setting, the combination of blood biomarker detection with brain imaging may enhance the accuracy of early diagnosis. Fluorescence-sensing techniques can be used not only to detect the levels of biomarkers in blood but also to image biomarkers in the brain in real time due to their low toxicity, high sensitivity and good biocompatibility. In this review, we summarize the newly developed fluorescent sensing platforms and their application in detecting and imaging biomarkers of AD, such as Aß and tau in the last five years, and discuss their prospects for clinical applications.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Brain/diagnostic imaging , Biomarkers , tau Proteins
13.
Bioorg Chem ; 133: 106400, 2023 04.
Article in English | MEDLINE | ID: mdl-36739684

ABSTRACT

Generally, hypoxia-inducible factor-1α (HIF-1α) is highly expressed in solid tumors, it plays a key role in the occurrence and development of tumors, hindering cancer treatment in various ways. The antitumor activity and pharmacological mechanism of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1­benzyl indazole], an HIF-1α inhibitor, and the design and synthesis of its derivatives have attracted tremendous attention in the field of antitumor research. YC-1 is a potential drug candidate and a lead compound for tumor therapy. Hence, the multifaceted mechanism of action of YC-1 and the structure activity relationship (SAR) of its derivatives are important factors to be considered for the development of HIF-1α inhibitors. Therefore, this review aimed to provide a comprehensive overview of the various antitumor mechanisms of YC-1 in antitumor research and an in-depth summary of the SAR for the development of its derivatives. A full understanding and discussion of these aspects are expected to provide potential ideas for developing novel HIF-1α inhibitors and antitumor drugs belonging to the YC-1 class. The review also highlighted the application prospects of the YC-1 class of potential antitumor candidates, and provided some unique insights about these antitumor agents.


Subject(s)
Antineoplastic Agents , Hypoxia-Inducible Factor 1, alpha Subunit , Indazoles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Hypoxia , Cell Line, Tumor , Indazoles/pharmacology , RNA, Messenger/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
14.
Drug Dev Res ; 84(3): 406-422, 2023 05.
Article in English | MEDLINE | ID: mdl-36694269

ABSTRACT

Simultaneous targeting of tumor vasculature and inhibitors of tumor cell glycolysis may be a promising antitumor strategy. Here, we reported the total synthesis and biological evaluation of A-ring arylurea flavonoid derivatives with B-ring trimethoxy group, which exhibited potent antitumor activity against a variety of tumor cells in vitro. Most of the derivatives showed in vitro antitumor activity on HepG-2, HGC-27, MDA-MB-231, and A549 cells. Among them, compounds 8e, 8f, 8g, 8h, 8j, and 8l also exhibited significant anti-proliferation effects on liver tumor cell subtypes BEL-7402 and SMMC-7721. Compound 8l had the lowest IC50 value (5.61 ± 0.39 µM) on HepG-2 cells, and showed the effects of inhibiting colony formation, arresting the cell cycle in G0 /G1 phase, and inducing apoptosis in a concentration-dependent manner. In addition, the toxicity of compound 8l on human normal cells LO2 and GES-1 was lower than that of sorafenib. The inhibitory effects of compound 8l on the expression of glycolytic rate-limiting enzymes HKII, PFK-1, PKM2 and vascular endothelial growth factor were further evaluated. Corresponding reduction in intracellular lactate was also detected after compound 8 treatment. Our results support an antitumor strategy targeting tumor vasculature and glycolysis to discover and develop a new generation of antitumor drugs.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Vascular Endothelial Growth Factor A , Liver Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship , Molecular Structure , Apoptosis , Cell Line, Tumor , Drug Design
15.
Biotechnol Appl Biochem ; 70(3): 1109-1120, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36480009

ABSTRACT

To verify the inhibitory mechanism of ß-catenin-designed peptides in colorectal cancer(CRC) tumors, the following experiments were performed. In vitro colony formation, Transwell assays, and flow cytometry were performed to assess the biological effects of designed peptides (F18KD, F20A4-7k, F20A4-10k, and F20A3-9k + F20A4-10k + F20A5-9k) in HT-29 cells. In vivo xenograft experiments were performed and treated with peptides. Next, tumors were subjected to Hematoxylin and eosin staining (HE), immunohistochemical, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays to evaluate the inhibitory effect of peptides on tumors. ß-Catenin levels were quantified via western blotting (WB) and quantitative real-time polymerase chain reaction, and ß-catenin was located using confocal laser scanning microscopy. T-cell factor-4 (TCF-4), C-myc, and CCND1 levels were quantified via WB. Results were obtained as following. First, the peptides reduced viability, migration, and invasion; promoted apoptosis; and stabilized the S phase of HT-29 cells. Second, peptides suppressed tumor growth and downregulated the expression of CD34, vascular endothelial growth factor, and ß-catenin in tumors. Furthermore, we found that peptides downregulated ß-catenin expression in both the cytoplasm and nucleus; TCF-4, C-myc, and CCND1 expression was also downregulated. Notably, ß-catenin-targeting peptides had a better inhibitory effect on CRC than non-ß-catenin-target peptides, and a combination of peptides exerted a more potent inhibitory effect on CRC than single peptides. It suggested that ß-Catenin-targeting peptides promote apoptosis in CRC tumors by inhibiting activation of the Wnt/ß-catenin pathway.


Subject(s)
Colorectal Neoplasms , Vascular Endothelial Growth Factor A , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Wnt Signaling Pathway , Apoptosis , Peptides/pharmacology , Peptides/metabolism , Cell Proliferation , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic
16.
Immunol Invest ; 52(2): 224-240, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36562687

ABSTRACT

Interleukin-34 (IL-34) is a cytokine that plays important roles at steady state and in diseases. The induced or inhibited expression of IL-34 by stimuli has been deeply investigated. However, the regulation of IL-34 basal expression is largely unknown. The aim of this study is to investigate whether IL-34 expression is regulated by a general transcription factor Specificity Protein 1 (Sp1) at transcription level. By using bioinformatic software, four putative Sp1-binding sites overlapping GC boxes were found in the core promoter region of IL-34. Alignment of the core promoter sequences of mammalian IL-34 showed GC box-C (-62/-57) and D (-11/-6) were conserved in some mammals. Luciferase assay results showed that only deletion of GC box-C (-62/-57) significantly reduced luciferase activities of IL-34 core promoter in SH-SY5Y cells. By using electrophoretic mobility shift assay (EMSA), it was found that Sp1 specifically interacted with GC box-C sequence CCCGCC (-62/-57) in the core promoter of IL-34. By using chromatin immunoprecipitation (ChIP), it was discovered that Sp1 bound to the core promoter of IL-34 in living cells. In addition, silencing of Sp1 expression by its specific siRNA reduced IL-34 mRNA and protein levels significantly in SH-SY5Y cells. Likewise, IL-34 expression was inhibited in a dose-dependent manner by a Sp1 inhibitor Plicamycin. Furthermore, silencing of Sp1 also downregulated mRNA and protein expression of IL-34 in GES-1 and 293T cell lines, suggesting that IL-34 transcription regulated by Sp1 was not cell-type specific. Taken together, these results indicate that Sp1 controls the basal level of IL-34 transcription.


Subject(s)
Neuroblastoma , Animals , Humans , Neuroblastoma/genetics , Promoter Regions, Genetic , Binding Sites , Interleukins/genetics , Interleukins/metabolism , RNA, Messenger/genetics , Luciferases/genetics , Luciferases/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Gene Expression Regulation , Mammals/genetics , Mammals/metabolism
17.
Transl Oncol ; 27: 101571, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36401966

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the leading cause of cancer-related deaths worldwide. Identification of gene biomarkers and their regulatory factors and signaling pathways is very essential to reveal the molecular mechanisms of NSCLC initiation and progression. Thus, the goal of this study is to identify gene biomarkers for NSCLC diagnosis and prognosis by using scRNA-seq data through bioinformatics techniques. scRNA-seq data were obtained from the GEO database to identify DEGs. A total of 158 DEGs (including 48 upregulated and 110 downregulated) were detected after gene integration. Gene Ontology enrichment and KEGG pathway analysis of DEGs were performed by FunRich software. A PPI network of DEGs was then constructed using the STRING database and visualized by Cytoscape software. We identified 12 key genes (KGs) including MS4A1, CCL5, and GZMB, by using two topological methods based on the PPI networking results. The diagnostic, expression, and prognostic potentials of the identified 12 key genes were assessed using the receiver operating characteristics (ROC) curve and a web-based tool, SurvExpress. From the regulatory network analysis, we extracted the 7 key transcription factors (TFs) (FOXC1, YY1, CEBPB, TFAP2A, SREBF2, RELA, and GATA2), and 8 key miRNAs (hsa-miR-124-3p, hsa-miR-34a-5p, hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-449a, hsa-miR-24-3p, hsa-let-7b-5p, and hsa-miR-7-5p) associated with the KGs were evaluated. Functional enrichment and pathway analysis, survival analysis, ROC analysis, and regulatory network analysis highlighted crucial roles of the key genes. Our findings might play a significant role as candidate biomarkers in NSCLC diagnosis and prognosis.

18.
Genomics Proteomics Bioinformatics ; 21(2): 292-299, 2023 04.
Article in English | MEDLINE | ID: mdl-36265769

ABSTRACT

Cancer therapy resistance and recurrence (CTRR) are the dominant causes of death in cancer patients. Recent studies have indicated that non-coding RNAs (ncRNAs) can not only reverse the resistance to cancer therapy but also are crucial biomarkers for the evaluation and prediction of CTRR. Herein, we developed CTRR-ncRNA, a knowledgebase of CTRR-associated ncRNAs, aiming to provide an accurate and comprehensive resource for research involving the association between CTRR and ncRNAs. Compared to most of the existing cancer databases, CTRR-ncRNA is focused on the clinical characterization of cancers, including cancer subtypes, as well as survival outcomes and responses to personalized therapy of cancer patients. Information pertaining to biomarker ncRNAs has also been documented for the development of personalized CTRR prediction. A user-friendly interface and several functional modules have been incorporated into the database. Based on the preliminary analysis of genotype-phenotype relationships, universal ncRNAs have been found to be potential biomarkers for CTRR. The CTRR-ncRNA is a translation-oriented knowledgebase and it provides a valuable resource for mechanistic investigations and explainable artificial intelligence-based modeling. CTRR-ncRNA is freely available to the public at http://ctrr.bioinf.org.cn/.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , RNA, Untranslated/genetics , Biomarkers , Knowledge Bases , Neoplasms/drug therapy , Neoplasms/genetics
19.
Article in English | MEDLINE | ID: mdl-36497800

ABSTRACT

Voice behavior is important for innovation, mistake prevention and organizational performance. Because organizational trust increases employees' possibility of disclosing their real inner ideas, we examined the relationships between organizational trust and voice behavior, focusing especially on the avenue of impelling people to feel a higher level of authenticity. We used multiple methods to analyze the relationship. First, we used two separate surveys (Studies 1a and 1b) with different questionnaires and populations to analyze the mediation relationship and generalize the results. Then, to test the causal path, an experiment (Study 2a) in which organizational trust was manipulated was designed. The results showed that employees' authenticity mediated the relation between organizational trust and voice behavior. To further test the causal effect of authenticity in the above mediation, authenticity was manipulated in another experiment (Study 2b). The results illustrated that higher levels of authenticity directly led to higher levels of voice behavior. These results support the hypothesis and expound on the psychological mechanism of how organizational trust increases voice behavior. The theoretical and practical implications of these findings are discussed.


Subject(s)
East Asian People , Organizational Culture , Humans , Organizations , Trust , Negotiating
20.
Article in English | MEDLINE | ID: mdl-36361235

ABSTRACT

BACKGROUND: Depression increases the risk of suicide. Depression and suicide attempts are significantly impacted by low self-esteem and interpersonal needs (i.e., thwarted belongingness (TB) and perceived burdensomeness (PB)). More research is required to clarify how these factors affected the change from depression to suicidal attempts, which would dramatically lower the suicide fatality rate. We sought to examine the mediating roles of self-esteem, TB, and PB in Chinese young adults, since previous research shows that self-esteem has a strong relationship with TB, while TB and PB have strong relationships with suicide attempts. METHODS: Measures on depression, interpersonal needs, and attempted suicide were completed by a sample of 247 Chinese social media users who had stated suicidal ideation online. RESULTS: The findings showed that people who attempted suicide had significantly higher levels of TB and PB. Suicidal attempts were also impacted by depression via the mediational chains, which included self-esteem, TB, and PB. CONCLUSIONS: Our findings might contribute to the expansion of the interpersonal theory of suicide and have an impact on effective suicide prevention.


Subject(s)
Suicidal Ideation , Suicide, Attempted , Humans , Young Adult , Depression/epidemiology , Interpersonal Relations , Self Concept , Risk Factors , Psychological Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...