Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Enzyme Microb Technol ; 179: 110467, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852284

ABSTRACT

ε-Poly-l-lysine (ε-PL), a natural food preservative with various advantages, is primarily produced by Streptomyces. It has attracted considerable attentions for the outstanding antibacterial activity, safety, heat stability, water solubility and other remarkable properties. In this study, a food-grade recombinant Bacillus subtilis was constructed for the biocatalysis of ε-PL. Firstly, the d-alanine racemase gene (alrA) was deleted from the genome of Bacillus subtilis 168 to construct an auxotrophic B. subtilis 168 (alrA-). Based on the shuttle plasmid pMA5, a food-grade plasmid pMA5a was constructed by replacing the genes of kanamycin resistance (Kanr) and ampicillin resistance (Ampr) with alrA and the gene encoding α-peptide of ß-galactosidase (lacZα), respectively. Subsequently, codon-optimized ε-PL synthase gene (pls) and P-pls were ligated into pMA5a and transformed in E. coli DH5α and expressed in B. subtilis 168 (alrA-). Finally, the whole-cell biocatalysis conditions for ε-PL production by B. subtilis 168 (alrA-)/pMA5a-pls were optimized, and the optimal conditions were 30°C, pH 4, l-lysine concentration of 0.6 g/L, bacterial concentration of 15 % (w/v) and a catalytic time of 7 h. The ε-PL production reached a maximum of 0.33 ± 0.03 g/L. The product was verified to be ε-PL by HPLC and tricine-SDS-PAGE. The information obtained in this study shows critical reference for the food-grade heterologous expression of ε-PL.

2.
Inorg Chem ; 63(19): 8750-8763, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38693869

ABSTRACT

Using a quinoline substituted Qsal ligand, Hqsal-5-Brq (Hqsal-5-Brq = N-(5-bromo-8-quinolyl)salicylaldimine), four FeIII complexes, [Fe(qsal-5-Brq)2]A·CH3OH (Y = NO3- (1NO3), BF4- (2BF4), PF6- (3PF6), OTf- (4OTf), were prepared and characterized. Structure analysis revealed that complex 2BF4 contained two species (2BF4(P1̅) and 2BF4(C2/c)). In these compounds except 3PF6, the [Fe(qsal-5-Brq)2]+ cations form 1D chains through π-π interactions and other weak interactions. Adjacent chains are connected to form the 2D "Chain Layer" structures and 3D structures through various supramolecular interactions. For 3PF6, a "Dimer Chain" structure is formed from the loosely connected dimers. Magnetic studies revealed that compounds 1NO3 and 2BF4(P1̅) displayed abrupt hysteretic SCO with the transition temperature T1/2↓ = 235 K, T1/2↑ = 240 K for 1NO3 and T1/2↓ = 230 K, T1/2↑ = 235 K for 2BF4(P1̅), while compounds 3PF6 and 4OTf are in the HS state. Desolvation of the complexes significantly modifies their SCO properties: the desolvated 1NO3 and 2BF4 show a gradual SCO, desolvated 3PF6 undergoes a two-step SCO, and desolvated 4OTf exhibits a hysteretic transition. Overall, this work reported the FeIII-SCO complexes of the quinoline-substituted Hqsal ligand and highlighted the potential of these ligands for the development of interesting FeIII-SCO materials.

3.
Noncoding RNA Res ; 9(3): 921-929, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38660591

ABSTRACT

Colorectal cancer (CRC) incidence ranks third among malignant cancers with a high propensity for distant metastasis. Despite continuous efforts to improve treatment, the prognosis especially in patients with advanced distant metastasis is low. The mechanism of development and progression of CRC is not fully understood. Non-coding RNAs (ncRNAs) have emerged as essential regulators in cancer progression. Here, we aim to dissect the role of one critical ncRNA, circANXA4, in CRC progression. CircANXA4 expression was analyzed by the GEO database. Differentially expressed circRNAs were identified by the Limma package R software. Expression of circANXA4 and miR-1256 was detected by qRT-PCR. The regulation of circANXA4 on cell proliferation and progression was confirmed with the cell viability assay using cell counting kit-8 (CCK-8) and transwell migration assay. RNA pull-down assay, RNA immunoprecipitation (RIP), and western blot were used to determine the interaction between circANXA4, miR-1256, and protamine1 (PRM1). CircANXA4 was upregulated in both CRC tissues and cell lines. Knockdown of circANXA4 effectively reduced cell proliferation, progression, and migration. Additionally, silencing circANXA4 remarkably increased miR-1256 expression, while reducing PRM1 expression, thereby demonstrating that circANXA4 downregulates miR-1256 expression through a complementary binding site. Rescue experiments revealed the interactions between circANXA4, miR-1256, and PRM1. Pearson correlation analysis revealed that circANXA4 expression positively correlated with PRM1 expression and miR-1256 expression inversely correlated with PRM1 expression. In sum, we demonstrated that circANXA4 promotes cancer cell proliferation and progression by sponging miR-1256 and upregulating PRM1 in CRC.

4.
Drug Metab Dispos ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658163

ABSTRACT

Imaging mass spectrometry (IMS) is a powerful tool for mapping the spatial distribution of unlabeled drugs and metabolites that may find application in assessing drug delivery, explaining drug efficacy, and identifying potential toxicity. This study focuses on determining the spatial distribution of the antidepressant duloxetine, which is widely prescribed despite common adverse effects (liver injury, constant headaches) whose mechanisms are not fully understood. We utilized high-resolution IMS with matrix-assisted laser desorption/ionization (MALDI-IMS) to examine the distribution of duloxetine and its major metabolites in four mouse organs where it may contribute to efficacy or toxicity: brain, liver, kidney, and spleen. In none of these tissues is DLX or its metabolites homogeneously distributed, which has implications for both efficacy and toxicity. We found duloxetine to be similarly distributed in spleen red pulp and white pulp but differentially distributed in different anatomic regions of the liver, kidney, and brain, with dose-dependent patterns. Comparison with hematoxylin and eosin staining of tissue sections reveals that the ion images of endogenous lipids help delineate anatomic regions in the brain and kidney, while heme ion images assist in differentiating regions within the spleen. These endogenous metabolites may serve as a valuable resource for examining the spatial distribution of other drugs in tissues when staining images are not available. These findings may facilitate future mechanistic studies of the therapeutic and adverse effects of duloxetine. In the current work, we did not perform absolute quantification of duloxetine, which will be reported in due course Significance Statement The study utilized imaging mass spectrometry to examine the spatial distribution of duloxetine and its primary metabolites in mouse brain, liver, kidney and spleen. These results may pave the way for future investigations into the mechanisms behind duloxetine's therapeutic and adverse effects. Furthermore, the mass spectrometry images of specific endogenous metabolites such as heme could be valuable in analyzing the spatial distribution of other drugs within tissues in scenarios where histological staining images are unavailable.

5.
Aging (Albany NY) ; 16(8): 7188-7216, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643462

ABSTRACT

BACKGROUND: This study aims to identify the essential cell cycle-related genes associated with prognosis in breast cancer (BRCA), and to verify the relationship between the central gene and immune infiltration, so as to provide detailed and comprehensive information for the treatment of BRCA. MATERIALS AND METHODS: Gene expression profiles (GSE10780, GSE21422, GSE61304) and the Cancer Genome Atlas (TCGA) BRCA data were used to identify differentially expressed genes (DEGs) and further functional enrichment analysis. STRING and Cytoscape were employed for the protein-protein interaction (PPI) network construction. TPX2 was viewed as the crucial prognostic gene by the Survival and Cox analysis. Furthermore, the connection between TPX2 expression and immune infiltrating cells and immune checkpoints in BRCA was also performed by the TIMER online database and R software. RESULTS: A total of 18 cell cycle-related DEGs were identified in this study. Subsequently, an intersection analysis based on TCGA-BRCA prognostic genes and the above DEGs identified three genes (TPX2, UBE2C, CCNE2) as crucial prognostic candidate biomarkers. Moreover, we also demonstrated that TPX2 is closely associated with immune infiltration in BRCA and a positive relation between TPX2 and PD-L1 expression was firstly detected. CONCLUSIONS: These results revealed that TPX2 is a potential prognostic biomarker and closely correlated with immune infiltration in BRCA, which could provide powerful and efficient strategies for breast cancer immunotherapy.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cell Cycle Proteins , Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins , Humans , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Female , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Biomarkers, Tumor/genetics , Prognosis , Microtubule-Associated Proteins/genetics , Protein Interaction Maps/genetics , Gene Expression Profiling , Cell Cycle/genetics , Databases, Genetic
6.
Biol Direct ; 19(1): 20, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454507

ABSTRACT

CircLRIG1, a newly discovered circRNA, has yet to have its potential function and biological processes reported. This study explored the role of circLRIG1 in the development and progression of bladder carcinoma and its potential molecular mechanisms. Techniques such as qRT-PCR, Western blot, various cellular assays, and in vivo models were used to investigate mRNA and protein levels, cell behavior, molecular interactions, and tumor growth. The results showed that both circLRIG1 and LRIG1 were significantly reduced in bladder carcinoma tissues and cell lines. Low circLRIG1 expression was associated with poor patient prognosis. Overexpressing circLRIG1 inhibited bladder carcinoma cell growth, migration, and invasion, promoted apoptosis, and decreased tumor growth and metastasis in vivo. Importantly, circLRIG1 was found to sponge miR-214-3p, enhancing LRIG1 expression, and its overexpression also modulated protein levels of E-cadherin, N-cadherin, Vimentin, and LRIG1. Similar effects were observed with LRIG1 overexpression. Notably, a positive correlation was found between circLRIG1 and LRIG1 expression in bladder carcinoma tissues. Additionally, the tumor-suppressing effect of circLRIG1 was reversed by overexpressing miR-214-3p or silencing LRIG1. The study concludes that circLRIG1 suppresses bladder carcinoma progression by enhancing LRIG1 expression via sponging miR-214-3p, providing a potential strategy for early diagnosis and treatment of bladder carcinoma.


Subject(s)
Carcinoma , MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Carcinoma/genetics , Cell Movement , Gene Expression Regulation, Neoplastic , Membrane Glycoproteins/metabolism
7.
Front Microbiol ; 15: 1351784, 2024.
Article in English | MEDLINE | ID: mdl-38298891

ABSTRACT

Helicobacter pylori (H. pylori) infection may alter the host's resistance to tsutsugamushi disease pathogens through the Th1 immune response, leading to potential synergistic pathogenic effects. A total of 117 scrub typhus cases at Beihai People's Hospital and affiliated hospitals of Youjiang University for Nationalities and Medical Sciences were studied from January to December 2022, alongside 130 healthy individuals forming the control group. All participants underwent serum H. pylori antibody testing. The prevalence of H. pylori infection was significantly higher among scrub typhus patients (89.7%) compared to healthy individuals (54.6%) (p < 0.05). Moreover, type I H. pylori infection was notably more prevalent in scrub typhus cases (67.5%) compared to healthy individuals (30%) (p < 0.05). Multifactorial analysis demonstrated type I H. pylori infection as an independent risk factor for scrub typhus (adjusted odds ratio: 2.407, 95% confidence interval: 1.249-4.64, p = 0.009). Among scrub typhus patients with multiple organ damage, the prevalence of type I H. pylori infection was significantly higher (50.6%) than type II H. pylori infection (15.4%) (χ2 = 4.735, p = 0.030). These results highlight a higher incidence of H. pylori infection in scrub typhus patients compared to the healthy population. Additionally, type I H. pylori strain emerged as an independent risk factor for scrub typhus development. Moreover, individuals infected with type I H. pylori are more susceptible to multiple organ damage. These findings suggest a potential role of H. pylori carrying the CagA gene in promoting and exacerbating scrub typhus.

8.
Plants (Basel) ; 13(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38256787

ABSTRACT

Sorghum mosaic virus (SrMV) is one of the most prevalent viruses deteriorating sugarcane production. Salicylic acid (SA) plays an essential role in the defense mechanism of plants and its exogenous application has been observed to induce the resistance against biotic and abiotic stressors. In this study, we set out to investigate the mechanism by which sorghum mosaic virus (SrMV) infected sugarcane responds to SA treatment in two sugarcane cultivars, i.e., ROC22 and Xuezhe. Notably, significantly low viral populations were observed at different time points (except for 28 d in ROC22) in response to post-SA application in both cultivars as compared to control based on qPCR data. Furthermore, the lowest number of population size in Xuezhe (20 copies/µL) and ROC22 (95 copies/µL) was observed in response to 1 mM exogenous SA application. A total of 2999 DEGs were identified, of which 731 and 2268 DEGs were up- and down-regulated, respectively. Moreover, a total of 806 DEGs were annotated to GO enrichment categories: 348 biological processes, 280 molecular functions, and 178 cellular components. GO functional categorization revealed that DEGs were mainly enriched in metabolic processes, extracellular regions, and glucosyltransferase activity, while KEGG annotation revealed that DEGs were mainly concentrated in phenylpropanoid biosynthesis and plant-pathogen interaction suggesting the involvement of these pathways in SA-induced disease resistance of sugarcane in response to SrMV infection. The RNA-seq dataset and qRT-PCR assay showed that the transcript levels of PR1a, PR1b, PR1c, NPR1a, NPR1b, PAL, ICS, and ABA were significantly up-regulated in response to SA treatment under SrMV infection, indicating their positive involvement in stress endorsement. Overall, this research characterized sugarcane transcriptome during SrMV infection and shed light on further interaction of plant-pathogen under exogenous application of SA treatment.

9.
Talanta ; 271: 125646, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38218058

ABSTRACT

Uric acid (UA) monitoring is the most effective method for diagnosis and treatment of gout, hyperuricemia, hypertension, and other diseases. However, challenges remain regarding detection efficiency and rapid on-site detection. Here, we first synthesized a CdS/Au/TiO2-NTAs Z-scheme heterojunction material using a titanium dioxide nanotube array (TiO2-NTAs) as the substrate and modified with gold nanoparticles (Au) and cadmium sulfide particles (CdS). This material achieves bandgap alignment to generate a large number of electron-hole pairs under illumination. Then, using CdS/Au/TiO2-NTAs as the working electrode and molecularly imprinted polymers (MIP) as the recognition unit, we constructed a portable photoelectrochemical (PEC) sensor for non-invasive instant detection of UA concentration in human saliva, which has unique advantages in the field of high-sensitivity PEC instant detection. The portable MIP-PEC sensor achieves a linear range of 0.01-50 µM and a detection limit as low as 5.07 nM (S/N = 3). At the same time, the portable MIP-PEC sensor exhibits excellent sensitivity, specificity as well as stability, and shows no statistically significant difference compared to traditional high-performance liquid chromatography (HPLC) in practical sample detection. Compared to traditional PEC modes, this work demonstrates a novel and universal method for high-sensitivity instant detection in the field of PEC.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanotubes , Humans , Uric Acid , Gold/chemistry , Saliva , Nanotubes/chemistry , Electrochemical Techniques/methods , Limit of Detection
10.
Sci Rep ; 14(1): 622, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182713

ABSTRACT

Lysosomes are essential components for managing tumor microenvironment and regulating tumor growth. Moreover, recent studies have also demonstrated that long non-coding RNAs could be used as a clinical biomarker for diagnosis and treatment of colorectal cancer. However, the influence of lysosome-related lncRNA (LRLs) on the progression of colon cancer is still unclear. This study aimed to identify a prognostic LRL signature in colon cancer and elucidated potential biological function. Herein, 10 differential expressed lysosome-related genes were obtained by the TCGA database and ultimately 4 prognostic LRLs for conducting a risk model were identified by the co-expression, univariate cox, least absolute shrinkage and selection operator analyses. Kaplan-Meier analysis, principal-component analysis, functional enrichment annotation, and nomogram were used to verify the risk model. Besides, the association between the prognostic model and immune infiltration, chemotherapeutic drugs sensitivity were also discussed in this study. This risk model based on the LRLs may be promising for potential clinical prognosis and immunotherapeutic responses related indicator in colon cancer patients.


Subject(s)
Colonic Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Prognosis , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Nomograms , Lysosomes/genetics , Tumor Microenvironment/genetics
11.
Ophthalmic Res ; 67(1): 115-124, 2024.
Article in English | MEDLINE | ID: mdl-37989114

ABSTRACT

INTRODUCTION: The aim of this study was to explore the association between parental myopia and high myopia with children's refraction and ocular biometry in large-scale Chinese preschool children from the Beijing Hyperopia Reserve Study. SUBJECTS/METHODS: This cross-sectional kindergarten-based study enrolled children aged 3-6 years. Cycloplegic refraction, axial length (AL), and corneal radius (CR) were measured for all children. Parents were asked to complete a questionnaire about refractive status (no myopia, mild myopia <-3 D, moderate myopia ≥-3 D and ≤-6, and high myopia >-6 D). RESULTS: The study enrolled 2,053 children (1,069 boys and 984 girls), with a mean age of 4.26 ± 0.96 years and mean spherical equivalent refraction (SER) of 1.11 ± 0.97 diopter. Of the children, 90.7% had at least one myopic parent, and 511 children (24.9%) had at least one highly myopic parent. SER decreased significantly with increasing severity of parental myopia (p < 0.001). Preschool children's myopia was independently associated with parental myopia (OR, 10.4 and 11.5 for one and two highly myopic parent[s]). Age (OR = 1.1), gender (OR = 1.7; girls as references), near work time (OR = 1.2), and both maternal (OR, 1.4 and 2.0 for moderate and high myopia) and paternal myopia (OR, 1.6 and 1.9 for moderate and high myopia) were independent risk factors for lacking hyperopia reserve. CONCLUSION: Severe parental myopia was associated with a lower SER, longer AL, and higher AL/CR ratio in preschool children. Parental myopia and near work may predispose children to faster elimination of hyperopia reserves before exposure to higher educational stress.


Subject(s)
Hyperopia , Myopia , Male , Female , Humans , Child, Preschool , Hyperopia/diagnosis , Cross-Sectional Studies , Myopia/diagnosis , Refraction, Ocular , Parents , Cornea , Biometry
12.
Mol Biotechnol ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082189

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most prevalent histology type of lung cancer worldwide, accounting for 18% of total cancer-related deaths estimated by GLOBOCAN in 2020. CircRNAs have emerged as potent regulators of NSCLC development. CircRANGAP1 (hsa_circ_0001235/hsa_circ_0063526) is a potential biomarker for NSCLC identified by microarray dataset analysis. Here, we investigated the biological functions of circRANGAP1 in NSCLC development and elucidated the associated competing endogenous RNA (ceRNA) mechanisms. We found that circRANGAP1 expression was upregulated in NSCLC tissues and cells, which was inversely correlated with carcinogenesis and poor clinical outcome of NSCLC patients. CircRANGAP1 knockdown inhibited NSCLC migration by regulating miR-512-5p/SOD2 axis. In conclusion, circRANGAP1 facilitated NSCLC tumorigenesis and development by sponging miR-512-5p to upregulate SOD2 expression. Suppression of circRANGAP1 expression by si-circRANGAP1 treatment could be a strategy to inhibit NSCLC development and metastasis.

13.
Medicine (Baltimore) ; 102(48): e36238, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38050310

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute infectious disease caused by a novel coronavirus. Traditional Chinese medicine (TCM) has been proven to have a potential curative effect on COVID-19. This study preliminarily analyzed the existing TCM prescription's key components and action mechanisms for preventing and treating COVID-19 using bioinformatic and experimental methods. Association and clustering analysis reveals that the "HQ + FF + BZ" drug combination had a strong correlation and confidence in 93 TCM prescriptions and may affect the progression of COVID-19 through inflammatory pathways such as the TNF signaling pathway. Further molecular docking revealed that quercetin has a higher affinity for IL6 and IL10 in the TNF signaling pathway associated with COVID-19. In vitro experiments demonstrated that quercetin could effectively reduce the levels of the inflammatory factor IL-6 and increase the anti-inflammatory factor IL-10, alleviating inflammation impact on cells. Our results provide a new understanding of the molecular mechanism of TCM prevention and treatment of COVID-19, which is helpful to the development of new diagnosis and treatment schemes for COVID-19.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Humans , Medicine, Chinese Traditional , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation , Quercetin/therapeutic use , Computational Biology
14.
Neuroscience ; 534: 29-40, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37832908

ABSTRACT

Neuropathic pain is a debilitating chronic pain condition and is refractory to the currently available treatments. Emerging evidence suggests that melatonin exerts analgesic effects in rodent models of neuropathic pain. Nevertheless, the exact underlying mechanisms of the analgesic effects of melatonin on neuropathic pain are largely unknown. Here, we observed that spinal nerve ligation (SNL) in rats L5 and L6 induced an obvious decrease in the 50% paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), indicating the induction of mechanical allodynia and the hyperalgesia, and melatonin prevented the genesis and maintenance of mechanical allodynia and the hyperalgesia. Notably, the inhibitory action of melatonin on SNL-induced mechanical allodynia and heat hypersensitivity was inhibited by a SIRT1 inhibitor (EX527). Melatonin treatment increased the expression of neuronal sirtuin1 (SIRT1) in DRGs following nerve injury. Furthermore, melatonin treatment restored the injury-dependent decrease in mitochondrial membrane potential and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and reduced the injury-dependent increase in hydrogen peroxide and 8-hydroxy-2-deoxyguanosine (8-OHdG), which was inhibited by EX527. In addition, we found that EX527 impeded the inhibitory effects of melatonin on the SNL-induced increased expression of cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). In conclusion, the above data demonstrated that melatonin alleviated mechanical allodynia and hyperalgesia induced by peripheral nerve injury via SIRT1 activation. Melatonin resolved mitochondrial dysfunction-oxidative stress-dependent and neuroinflammation mechanisms that were driven by SIRT1 after nerve injury.


Subject(s)
Melatonin , Neuralgia , Rats , Animals , Hyperalgesia/metabolism , Sirtuin 1/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Rats, Sprague-Dawley , Ganglia, Spinal/metabolism , Neuralgia/metabolism , Spinal Nerves/injuries , Mitochondria/metabolism , Analgesics
15.
Drug Resist Updat ; 71: 101003, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866104

ABSTRACT

Renal cell carcinoma (RCC) is known to be the most commonly diagnosed kidney cancer. Clear cell RCC (ccRCC) represents approximately 85 % of diagnosed RCC cases. Targeted therapeutics, such as multi-targeted tyrosine kinase inhibitors (TKI) and mTOR inhibitors, are widely used in ccRCC therapy. However, patients treated with mTOR and TKI inhibitors easily acquire drug resistance, making the therapy less effective. Here, we demonstrated that circPTEN inhibits the expression of its parental gene PTEN by reducing methylation of the PTEN promotor and inhibits GLUT1 expression by reducing m6A methylation of GLUT1, which suppresses ccRCC progression and resistance to mTOR inhibitors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Glucose Transporter Type 1 , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , MTOR Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
16.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631047

ABSTRACT

(1) Background: Ulcerative colitis (UC) is a disease caused by noninfectious chronic inflammation characterized by varying degrees of inflammation affecting the colon or its entire mucosal surface. Current therapeutic strategies rely on the suppression of the immune response, which is effective, but can have detrimental effects. Recently, different plant polysaccharides and their degradation products have received increasing attention due to their prominent biological activities. The aim of this research was to evaluate the mitigation of inflammation exhibited by tamarind seed polysaccharide hydrolysate (TSPH) ingestion in colitis mice. (2) Methods: TSPH was obtained from the hydrolysis of tamarind seed polysaccharide (TSP) by trifluoroacetic acid (TFA). The structure and physical properties of TSPH were characterized by ultraviolet spectroscopy (UV), thin-layer chromatography (TLC), fourier transform infrared spectroscopy (FT-IR), and High-Performance Liquid Chromatography and Electrospray Ionization Mass Spectrometry (HPLC-ESI/MS) analysis. Then, the alleviative effects of the action of TSPH on 2.5% dextran sodium sulfate (DSS)-induced colitis mice were investigated. (3) Results: TSPH restored pathological lesions in the colon and inhibited the over-secretion of pro-inflammatory cytokines in UC mice. The relative expression level of mRNA for colonic tight junction proteins was increased. These findings suggested that TSPH could reduce inflammation in the colon. Additionally, the structure of the gut microbiota was also altered, with beneficial bacteria, including Prevotella and Blautia, significantly enriched by TSPH. Moreover, the richness of Blautia was positively correlated with acetic acid. (4) Conclusions: In conclusion, TSPH suppressed colonic inflammation, alleviated imbalances in the intestinal flora and regulated bacterial metabolites. Thus, this also implies that TSPH has the potential to be a functional food against colitis.

17.
Int J Biol Macromol ; 250: 126147, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37544559

ABSTRACT

Triple-negative breast cancer (TNBC) is a fatal disease. Drug resistance and the lack of effective drugs are the leading causes of death in patients with TNBC. Recently, long non-coding RNAs have been proven to be effective drug design targets owing to their high tissue specificity; however, an effective drug delivery system is necessary for their clinical application. In this study, we constructed a novel nanodrug delivery system based on the epidermal growth factor receptor (EGFR)-targeted aptamer CL4-modified exosomes (EXOs-CL4) for the targeted delivery of aspartyl-tRNA synthetase-antisense RNA 1 (DARS-AS1) small interfering RNA (siRNA) and doxorubicin (DOX) to TNBC cells in vitro and in vivo. This delivery system exerted potent anti-proliferation, anti-migration, and pro-apoptotic effects on TNBC cells. Silencing DARS-AS1 increased the sensitivity of TNBC cells to DOX by suppressing the transforming growth factor-ß (TGF-ß)/Smad3 signaling pathway-induced autophagy, thereby enhancing the synergetic antitumor effects. Collectively, our findings revealed that EXOs-CL4-mediated delivery of DARS-AS1 siRNA can be used as a new treatment strategy for DOX-resistant TNBC. Moreover, EXOs-CL4 can be used as effective drug delivery systems for targeted TNBC therapy.

18.
J Antimicrob Chemother ; 78(10): 2435-2441, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37563789

ABSTRACT

OBJECTIVES: Aminoglycosides and polymyxins are antibiotics with in vitro activity against MDR Gram-negative bacteria. However, their clinical use is hindered by dose-limiting nephrotoxicity. The objective of this project was to determine if zileuton can reduce nephrotoxicity associated with amikacin and polymyxin B in a rat model of acute kidney injury. METHODS: Sprague Dawley rats (n = 10, both genders) were administered either amikacin (300 mg/kg) or polymyxin B (20 mg/kg) daily for 10 days. Zileuton (4 and 10 mg/kg) was delivered intraperitoneally 15 min before antibiotic administration. Blood samples were collected at baseline and daily to determine serum creatinine concentration. Nephrotoxicity was defined as a ≥2× elevation of baseline serum creatinine. Time-to-event analysis and log rank test were used to compare the onset of nephrotoxicity in different cohorts. Histopathological analysis was also conducted to characterize the extent of kidney injury. RESULTS: Animals receiving amikacin or polymyxin B alone had nephrotoxicity rates of 90% and 100%, respectively. The overall rate was reduced to 30% in animals receiving adjuvant zileuton. The onset of nephrotoxicity associated with amikacin and polymyxin B was also significantly delayed by zileuton at 4 and 10 mg/kg, respectively. Histopathology confirmed reduced kidney injury in animals receiving amikacin concomitant with zileuton. CONCLUSIONS: Our pilot data suggest that zileuton has the potential to attenuate nephrotoxicity associated with last-line antibiotics. This would allow these antibiotics to treat MDR Gram-negative bacterial infections optimally without dose-limiting constraints. Further studies are warranted to optimize drug delivery and dosing in humans.


Subject(s)
Acute Kidney Injury , Polymyxins , Humans , Female , Rats , Male , Animals , Polymyxins/adverse effects , Polymyxin B/adverse effects , Aminoglycosides , Amikacin/toxicity , Creatinine , Rats, Sprague-Dawley , Anti-Bacterial Agents , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Kidney/pathology , Models, Animal
19.
J Mater Chem B ; 11(35): 8433-8448, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37577774

ABSTRACT

Mitochondria-targeted copper-depletion is emerging as an attractive strategy to combat cancer. However, existing copper molecular chelators are non-specific, toxic and ineffective. Here, it is reported that multifunctional nanoparticles (MSN-TPP/BNA-DPA) can not only target mitochondria to deprive copper ions to trigger copper-depletion therapy, but also serve as nanocarriers to deliver anticancer drugs for chemotherapy, which are engineered by conjugating a fluorophore 4-bromo-1,8-naphthalicanhydride (BNA), a copper-depriving moiety dimethylpyridinamine (DPA) and a mitochondrial targeting ligand triphenylphosphonium (TPP) on the surface of mesoporous silica nanoparticles (MSN). BNA and the internal charge transfer of compound BNA-DPA endow MSN-TPP/BNA-DPA with green fluorescence emission upon UV excitation, which can be used to monitor the cellular uptake of nanoparticles. When copper ions bind to DPA, green fluorescence is quenched, providing visualization feedback of copper-depletion. Therapeutically, mitochondria-targeted copper-depletion effectively causes mitochondria damage, elevated oxidative stress and reduced ATP production to induce intensive cancer cell death. Moreover, the mesoporous structure enables MSN-TPP/BNA-DPA to deliver doxorubicin to mitochondria for chemotherapy and enhances copper-depletion therapy through H2O2 production. Together, the synergistic therapeutic effect of enhanced copper-depletion therapy and doxorubicin-mediated chemotherapy achieves a remarkable cancer cell-killing effect and significant tumor growth inhibition in 4T1 tumor-bearing mice. This work provides an efficacious strategy for copper-depletion based synergistic cancer therapy.


Subject(s)
Drug Delivery Systems , Neoplasms , Animals , Mice , Copper/pharmacology , Hydrogen Peroxide/metabolism , Doxorubicin , Neoplasms/drug therapy , Silicon Dioxide/chemistry , Mitochondria/metabolism
20.
Brain Res ; 1818: 148473, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37414269

ABSTRACT

Fear generalization contributes to the development and maintenance of pain. Pain sensitivity has been proposed to predict the strength of fear responses to aversive stimuli. However, whether individual variation in pain sensitivity affects pain-related fear generalization and its underlying cognitive processing remains unclear. To address this gap, we recorded behavioral and event-related potential (ERP) data among 22 high pain sensitivity (HPS) and 22 low pain sensitivity (LPS) healthy adults when exposed to a fear generalization paradigm. The behavioral results indicate that the HPS group displayed higher unconditioned stimulus expectancy and greater fear, arousal, and anxiety ratings to conditioned stimulus and generalization stimulus than the LPS group (all p values < 0.05). The ERP results showed that the HPS group exhibited a larger late positive potential evoked by GS2, GS3 and CS- (all p < 0.005) but a smaller N1 evoked by all CS and GSs (all p values < 0.05) relative to the LPS group. These findings suggest that individuals with a high level of pain sensitivity allocate more attention resources to pain-related threatening stimuli, which contributes to an overgeneralization of pain-related fear.


Subject(s)
Fear , Lipopolysaccharides , Adult , Humans , Fear/physiology , Cognition , Pain , Evoked Potentials
SELECTION OF CITATIONS
SEARCH DETAIL
...