Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(2): 36, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38291310

ABSTRACT

KEY MESSAGE: A total of 90,000 capture probes derived from wheat and Thinopyrum elongatum were integrated into one chip, which served as an economical genotype for explorating Thinopyrumspecies and their derivatives. Thinopyrum species play a crucial role as a source of new genetic variations for enhancing wheat traits, including resistance to both abiotic and biotic factors. Accurate identification of exogenous chromosome(s) or chromosome segments or genes is essential following the introduction of alien genetic material into wheat, but this task remains challenging. This study aimed to develop a high-resolution wheat-Thinopyrum elongatum array, named GenoBaits®WheatplusEE, to trace alien genetic information by genotyping using a target sequencing system. This GenoBaits®WheatplusEE array included 90,000 capture probes derived from two species and integrated into one chip, with 10,000 and 80,000 originating from wheat and Th. elongatum, respectively. The capture probes were strategically positioned in genes and evenly distributed across the genome, facilitating the development of a roadmap for identifying each alien gene. The array was applied to the high-throughput identification of the alien chromosomes or segments in Thinopyrum and distantly related species and their derivatives. Our results demonstrated that the GenoBaits®WheatplusEE array could be used for direct identification of the breakpoint of alien segments, determine copy number of alien chromosomes, and reveal variations in wheat chromosomes by a single round of target sequencing of the sample. Additionally, we could efficiently and cost-effectively genotype, supporting the exploration of subgenome composition, phylogenetic relationships, and polymorphisms in essential genes (e.g., Fhb7 gene) among Thinopyrum species and their derivatives. We hope that GenoBaits®WheatplusEE will become a widely adopted tool for exporting wild germplasm for wheat improvement in the future.


Subject(s)
Poaceae , Triticum , Triticum/genetics , Phylogeny , Poaceae/genetics , Phenotype , Polymorphism, Genetic
2.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047699

ABSTRACT

Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) is an excellent gene resource for wheat breeding, which is characterized by early maturity, low plant height, and disease resistance. The wheat-P. huashanica derivatives were created by the elite genes of P. huashanica and permeate into common wheat through hybridization. Among them, a long-glume material 20JH1155 was identified, with larger grains and longer spike than its parents. In the present study, the methods of cytological observation, GISH, and sequential FISH analysis showed that 20JH1155 contained 21 pairs of wheat chromosomes and a pair of P. huashanica. There were some differences in 5A and 7B chromosomes between 20JH1155 and parental wheat 7182. Molecular marker, FISH, and sequence cloning indicated 20JH1155 alien chromosomes were 3Ns of P. huashanica. In addition, differentially expressed genes during immature spikelet development of 20JH1155 and 7182 and predicted transcription factors were obtained by transcriptome sequencing. Moreover, a total of 7 makers derived from Ph#3Ns were developed from transcriptome data. Taken together, the wheat-P. huashanica derived line 20JH1155 provides a new horizon on distant hybridization of wheat and accelerates the utilization of genes of P. huashanica.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Poaceae/genetics , Disease Resistance/genetics , Hybridization, Genetic , Plant Diseases/genetics
3.
Planta ; 257(5): 84, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36943494

ABSTRACT

MAIN CONCLUSION: 44 wheat LOX genes were identified by silico genome-wide search method. TaLOX5, 7, 10, 24, 29, 33 were specifically expressed post aphid infestation, indicating their participation in wheat-aphid interaction. In plants, LOX genes play important roles in various biological progresses including seed germination, tuber development, plant vegetative growth and most crucially in plant signal transduction, stress response and plant defense against plant diseases and insects. Although LOX genes have been characterized in many species, the importance of the LOX family in wheat has still not been well understood, hampering further improvement of wheat under stress conditions. Here, we identified 44 LOX genes (TaLOXs) in the whole wheat genome and classified into three subfamilies (9-LOXs, Type I 13-LOXs and Type II 13-LOXs) according to phylogenetic relationships. The TaLOXs belonging to the same subgroup shared similar gene structures and motif organizations. Synteny analysis demonstrated that segmental duplication events mainly contributed to the expansion of the LOX gene family in wheat. The results of protein-protein interaction network (PPI) and miRNA-TaLOXs predictions revealed that three TaLOXs (TaLOX20, 22 and 37) interacted mostly with proteins related to methyl jasmonate (MeJA) signaling pathway. The expression patterns of TaLOXs in different tissues (root, stem, leaf, spike and grain) under diverse abiotic stresses (heat, cold, drought, drought and heat combined treatment, and salt) as well as under diverse biotic stresses (powdery mildew pathogen, Fusarium graminearum and stripe rust pathogen) were systematically analyzed using RNA-seq data. We obtained aphid-responsive candidate genes by RNA-seq data of wheat after the English grain aphid infestation. Aphid-responsive candidate genes, including TaLOX5, 7, 10, 24, 29 and 33, were up-regulated in the wheat aphid-resistant genotype (Lunxuan144), while they were little expressed in the susceptible genotype (Jimai22) during late response (48 h and 72 h) to the English grain aphid infestation. Meanwhile, qRT-PCR analysis was used to validate these aphid-responsive candidate genes. The genetic divergence and diversity of all the TaLOXs in bread wheat and its relative species were investigated by available resequencing data. Finally, the 3D structure of the TaLOX proteins was predicted based on the homology modeling method. This study not only systematically investigated the characteristics and evolutionary relationships of TaLOXs, but also provided potential candidate genes in response to the English grain aphid infestation and laid the foundation to further study the regulatory roles in the English grain aphid infestation of LOX family in wheat and beyond.


Subject(s)
Aphids , Animals , Aphids/genetics , Lipoxygenase/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Stress, Physiological/genetics
4.
Insects ; 13(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36135478

ABSTRACT

Clip cages are commonly used to confine aphids or other small insects to a single leaf when conducting plant-small insect interaction studies; however, clip cages are usually heavy or do not efficiently transmit light, which has an impact on leaf physiology, limiting their application. Here, simple, lightweight, and transparent modified clip cages were constructed using punched clear plastic cups, cut transparent polyvinyl chloride sheets, nylon organdy mesh, and bent duck-bill clips. These cages can be clipped directly onto dicot leaves or attached to monocot leaves with bamboo skewers and elastic bands. The weight, production time, and aphid escape rates of the modified clip cages were 3.895 ± 0.004 g, less than 3 min, and 2.154 ± 0.323%, respectively. The effects of the modified clip cage on the growth, development, and reproduction of the English grain aphid (Sitobion avenae Fabricius) in comparison with the whole cage were studied. The biochemical responses of wheat (Triticum aestivum) to the cages were also investigated. No significant differences were observed in the life table parameters, nymph mortality, and adult fecundity in S. avenae confined to clip cages and whole cages, but the clip cages were more time efficient than whole cages when conducting life table studies. Moreover, the hydrogen peroxide accumulation, callose deposition, and cell necrosis in wheat leaves covered by empty clip cages and empty whole cages were similar, and significantly lower than treatments where the aphids were inside the clip cage. The results demonstrate that the modified clip cages had negligible effects on the plant and aphid physiology, suggesting that they are effective for studying plant-small insect interactions.

5.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682692

ABSTRACT

The grain aphid Sitobion avenae (Fabricius) is one of the most destructive pests of wheat (Triticum aestivum). Deployment of resistant wheat germplasm appears as an excellent solution for this problem. Elite bread wheat cultivars only have limited resistance to this pest. The present study was carried out to investigate the potential of the tetraploid wheat (Triticum turgidum) variety Lanmai, which showed high resistance to S. avenae at both seedling and adult plant stages, as a source of resistance genes. Based on apterous adult aphids' fecundity tests and choice bioassays, Lanmai has been shown to display antixenosis and antibiosis. Suppression subtractive hybridization (SSH) was employed to identify and isolate the putative candidate defense genes in Lanmai against S. avenae infestation. A total of 134 expressed sequence tags (ESTs) were identified and categorized based on their putative functions. RT-qPCR analysis of 30 selected genes confirmed their differential expression over time between the resistant wheat variety Lanmai and susceptible wheat variety Polan305 during S. avenae infestation. There were 11 genes related to the photosynthesis process, and only 3 genes showed higher expression in Lanmai than in Polan305 after S. avenae infestation. Gene expression analysis also revealed that Lanmai played a critical role in salicylic acid and jasmonic acid pathways after S. avenae infestation. This study provided further insights into the role of defense signaling networks in wheat resistance to S. avenae and indicates that the resistant tetraploid wheat variety Lanmai may provide a valuable resource for aphid tolerance improvement in wheat.


Subject(s)
Aphids , Animals , Antibiosis , Salicylic Acid , Tetraploidy , Triticum/genetics
6.
BMC Plant Biol ; 22(1): 111, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279089

ABSTRACT

BACKGROUND: Owing to their excellent resistance to abiotic and biotic stress, Thinopyrum intermedium (2n = 6x = 42, JJJsJsStSt) and Th. ponticum (2n = 10x = 70) are both widely utilized in wheat germplasm innovation programs. Disomic substitution lines (DSLs) carrying one pair of alien chromosomes are valuable bridge materials for transmission of novel genes, fluorescence in situ hybridization (FISH) karyotype construction and specific molecular marker development. RESULTS: Six wheat-Thinopyrum DSLs derived from crosses between Abbondanza nullisomic lines (2n = 40) and two octoploid Trititrigia lines (2n = 8x = 56), were characterized by sequential FISH-genome in situ hybridization (GISH), multicolor GISH (mc-GISH), and an analysis of the wheat 15 K SNP array combined with molecular marker selection. ES-9 (DS2St (2A)) and ES-10 (DS3St (3D)) are wheat-Th. ponticum DSLs, while ES-23 (DS2St (2A)), ES-24 (DS3St (3D)), ES-25(DS2St (2B)), and ES-26 (DS2St (2D)) are wheat-Th. intermedium DSLs. ES-9, ES-23, ES-25 and ES-26 conferred high thousand-kernel weight and stripe rust resistance at adult stages, while ES-10 and ES-24 were highly resistant to stripe rust at all stages. Furthermore, cytological analysis showed that the alien chromosomes belonging to the same homoeologous group (2 or 3) derived from different donors carried the same FISH karyotype and could form a bivalent. Based on specific-locus amplified fragment sequencing (SLAF-seq), two 2St-chromosome-specific markers (PTH-005 and PTH-013) and two 3St-chromosome-specific markers (PTH-113 and PTH-135) were developed. CONCLUSIONS: The six wheat-Thinopyrum DSLs conferring stripe rust resistance can be used as bridging parents for transmission of valuable resistance genes. The utility of PTH-113 and PTH-135 in a BC1F2 population showed that the newly developed markers could be useful tools for efficient identification of St chromosomes in a common wheat background.


Subject(s)
Chromosomes, Plant , Disease Resistance/genetics , Genetic Markers , Poaceae/genetics , Poaceae/microbiology , Puccinia/pathogenicity , Triticum/genetics , Triticum/microbiology , Cytogenetic Analysis , Genetic Variation , Genotype
7.
BMC Plant Biol ; 21(1): 575, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34872505

ABSTRACT

BACKGROUND: Aegilops geniculata Roth is closely related to common wheat (Triticum aestivum L.) and is a valuable genetic resource for improvement of wheat. RESULTS: In this study, the W19513 line was derived from the BC1F10 progeny of a cross between wheat 'Chinese Spring' and Ae. geniculata SY159. Cytological examination showed that W19513 contained 44 chromosomes. Twenty-two bivalents were formed at the first meiotic metaphase I in the pollen mother cellsand the chromosomes were evenly distributed to opposite poles at meiotic anaphase I. Genomic in situ hybridization demonstrated that W19513 carried a pair of alien chromosomes from the M genome. Fluorescence in situ hybridization confirmed detection of variation in chromosomes 4A and 6B. Functional molecular marker analysis using expressed sequence tag-sequence-tagged site and PCR-based landmark unique gene primers revealed that the alien gene belonged to the third homologous group. The marker analysis confirmed that the alien chromosome pair was 3Mg. In addition, to further explore the molecular marker specificity of chromosome 3Mg, based on the specific locus amplified fragment sequencing technique, molecular markers specific for W19513 were developed with efficiencies of up to 47.66%. The W19513 line was inoculated with the physiological race E09 of powdery mildew (Blumeria graminis f. sp. tritici) at the seedling stage and showed moderate resistance. Field inoculation with a mixture of the races CYR31, CYR32, CYR33, and CYR34 of the stripe rust fungus (Puccinia striiformis f. sp. triticii) revealed that the line W19513 showed strong resistance. CONCLUSIONS: This study provides a foundation for use of the line W19513 in future genetic research and wheat improvement.


Subject(s)
Aegilops/genetics , Plant Diseases/genetics , Triticum/genetics , Aegilops/microbiology , Ascomycota/physiology , Basidiomycota/physiology , Chromosomes, Plant , Cytogenetic Analysis , Disease Resistance/genetics , Genetic Markers , In Situ Hybridization, Fluorescence , Plant Breeding , Plant Diseases/microbiology , Triticum/microbiology
8.
Plant Genome ; 14(2): e20092, 2021 07.
Article in English | MEDLINE | ID: mdl-33719166

ABSTRACT

Heat-shock proteins (HSPs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum L.) HSPs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 119 DnaJ (Hsp40) proteins (TaDnaJs; encoded by 313 genes) and 41 Hsp70 proteins (TaHsp70s; encoded by 95 genes) into six and four groups, respectively, via a phylogenetic analysis. An examination of protein sequence alignment revealed diversity in the TaDnaJ structural organization, but a highly conserved J-domain, which was usually characterized by an HPD motif followed by DRD or DED motifs. The expression profiles of HSP-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici (Bgt) and Puccinia striiformis f. sp. tritici (Pst) stress. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated a lack of similarity in the expression of DnaJ70b, Hsp70-30b, and Hsp90-4b in Bgt-infected resistant and susceptible wheat. Furthermore, a direct interaction between DnaJ70 and TaHsp70-30 was not detected in a yeast two-hybrid (Y2H) assay, but screening cDNA library and Y2H evidence supported that TaHsp70-30 not only interacts directly with heat-shock transcription factor (HSF) A9-like protein but also interacts with TaHsp90-4 by HSP organizing protein. This study revealed the structure and expression profiles of the HSP-encoding genes in wheat, which may be useful for future functional elucidation of wheat HSPs responses to fungal infections.


Subject(s)
Plant Diseases , Triticum , Ascomycota , Heat-Shock Proteins/genetics , Phylogeny , Plant Diseases/genetics , Triticum/genetics
9.
Mol Breed ; 41(10): 60, 2021 Oct.
Article in English | MEDLINE | ID: mdl-37309315

ABSTRACT

Synthetic hexaploid wheat offers breeders ready access to potentially novel genetic variation in wild ancestral species. In this study, we crossed MY3478 (2n = 4x = 28, AABB) as the maternal parent with the stripe rust-resistant SY41 (2n = 2x = 14, DD) as the paternal parent to construct the new hexaploid wheat line NA0928 through natural allopolyploidization. Agronomic traits and the cytology of the S8-S9 generations of NA0928 were analyzed. Abundant variation in agronomic traits was observed among each strain of NA0928 in the S8 generation. Agronomic traits were superior in strains resistant to stripe rust compared with those of highly susceptible strains. The rank order of the coefficients of variation were tiller number (55.3%) > spike length (15.3%) > number of spikelets (13.9%) > plant height (8.7). Number of tillers and spike length are important traits in wheat breeding to improve yield. Cytological observation and fluorescence in situ hybridization showed that the chromosome number and configuration showed rich variation among NA0928 strains in the S9 generation. Chromosome number ranged from 36 to 44. Variation in chromosome karyotype was detected in the A and B subgenomes. Meiotic chromosome behavior in pollen mother cells and multicolor genomic in situ hybridization revealed that two new synthetic hexaploid wheat strains showed genetic stability; one strain was resistant to stripe rust and developed multiple tillers, and the other strain was susceptible to stripe rust, but both showed improved thousand-kernel weight (TKW) weight and produced multiple tillers. The two strains will be valuable germplasm resources for use in wheat breeding.

10.
J Genet ; 992020.
Article in English | MEDLINE | ID: mdl-32529987

ABSTRACT

Powdery mildew (Blumeria graminis f. sp. Tritici, (Bgt)) is an important worldwide fungal foliar disease of wheat (Triticum aestivum) responsible for severe yield losses. The development of resistance genes and dissection of the resistance mechanism will therefore be beneficial in wheat breeding. The Bgt resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 from Triticum dicoccoides, and it is still one of the most effective resistance genes. Here, by RNA sequencing, we identified three co-expressed gene modules using pairwise comparisons and weighted gene co-expression network analysis during wheat-Bgt interactions compared with mock-infected plants. Hub genes of stress-specific modules were significantly enriched in spliceosomes, phagosomes, the mRNA surveillance pathway, protein processing in the endoplasmic reticulum, and endocytosis. Induced module genes located on chromosome 5BL were selected to construct a protein-protein interaction network. Several proteins were predicted as the key hub node, including Hsp70, DEAD/DEAH box RNA helicase PRH75, elongation factor EF-2, cell division cycle 5, ARF guanine-nucleotide exchange factor GNOM-like, and protein phosphatase 2C 70 protein, which interacted with several disease resistance proteins such as RLP37, RPP13 and RPS2 analogues. Gene ontology enrichment results showed that wheat could activate binding functional genes via an mRNA transcription mechanism in response to Bgt stress. Of these node genes, GNOM-like, PP2C isoform X1 and transmembrane 9 superfamily member 9 were mapped onto the genetic fragment of PmAS846 with a distance of 4.8 Mb. This work provides the foundations for understanding the resistance mechanism and cloning the resistance gene PmAS846.


Subject(s)
Ascomycota/metabolism , Disease Resistance/genetics , Stress, Physiological , Triticum/genetics , Triticum/metabolism , Sequence Analysis, RNA
11.
Int J Mol Sci ; 21(5)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182810

ABSTRACT

Aegilops geniculata Roth has been used as a donor of disease-resistance genes, to enrich the gene pool for wheat (Triticum aestivum) improvement through distant hybridization. In this study, the wheat-Ae. geniculata alien disomic substitution line W16998 was obtained from the BC1F8 progeny of a cross between the common wheat 'Chinese Spring' (CS) and Ae. geniculata Roth (serial number: SY159//CS). This line was identified using cytogenetic techniques, analysis of genomic in situ hybridization (GISH), functional molecular markers (Expressed sequence tag-sequence-tagged site (EST-STS) and PCR-based landmark unique gene (PLUG), fluorescence in situ hybridization (FISH), sequential fluorescence in situ hybridization-genomic in situ hybridization (sequential FISH-GISH), and assessment of agronomic traits and powdery mildew resistance. During the anaphase of meiosis, these were evenly distributed on both sides of the equatorial plate, and they exhibited high cytological stability during the meiotic metaphase and anaphase. GISH analysis indicated that W16998 contained a pair of Ae. geniculata alien chromosomes and 40 common wheat chromosomes. One EST-STS marker and seven PLUG marker results showed that the introduced chromosomes of Ae. geniculata belonged to homoeologous group 7. Nullisomic-tetrasomic analyses suggested that the common wheat chromosome, 7A, was absent in W16998. FISH and sequential FISH-GISH analyses confirmed that the introduced Ae. geniculata chromosome was 7Mg. Therefore, W16998 was a wheat-Ae. geniculata 7Mg (7A) alien disomic substitution line. Inoculation of isolate E09 (Blumeria graminis f. sp. tritici) in the seedling stage showed that SY159 and W16998 were resistant to powdery mildew, indeed nearly immune, whereas CS was highly susceptible. Compared to CS, W16998 exhibited increased grain weight and more spikelets, and a greater number of superior agronomic traits. Consequently, W16998 was potentially useful. Germplasms transfer new disease-resistance genes and prominent agronomic traits into common wheat, giving the latter some fine properties for breeding.


Subject(s)
Aegilops/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Triticum/genetics , Chromosomes, Plant/genetics , Cytogenetic Analysis/methods , Genetic Markers/genetics , Hybridization, Genetic/genetics , In Situ Hybridization, Fluorescence/methods , Plant Breeding/methods , Plant Diseases/genetics , Poaceae/genetics
12.
Plant Sci ; 288: 110160, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31521219

ABSTRACT

Alternative splicing (AS) enhances the diversities of both transcripts and proteins in eukaryotes, which contribute to stress adaptation. To catalog wheat (Triticum aestivum L.) AS genes, we characterized 45 RNA-seq libraries from wheat seedlings infected by powdery mildew, Blumeria graminis f. sp. tritici (Bgt) or stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst). We discovered that 11.2% and 10.4% of the multiexon genes had AS transcripts during Bgt and Pst infections, respectively. In response to fungal infection, wheat modulated AS not only in disease resistance proteins, but also in splicing related factors. Apart from the stress induced or activated splicing variants by pathogen, the differential expression profiles were fold increased through changing the ratio of full spliced transcripts versus intron retention (IR) transcripts. Comparing AS transcripts produced by the same gene in Bgt with Pst stress, the spliced terminal exons and the stranded introns are independent and different. This demonstrated that differential induction of specific splice variants were activated against two fungal pathogens. The specific induced AS genes in the Pst-resistant plants were enriched in improving the membrane permeability and protein modification ability, whereas gene expression involved in protein translation and transport were strengthened in Pst-susceptible plants.


Subject(s)
Alternative Splicing , Host-Pathogen Interactions , Multigene Family , Plant Diseases/genetics , Transcriptional Activation , Triticum/genetics , Ascomycota/physiology , Basidiomycota/physiology , Plant Diseases/microbiology , Triticum/microbiology
13.
Genome ; 60(10): 860-867, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28759728

ABSTRACT

Thinopyrum ponticum (Th. ponticum) (2n = 10x = 70) is an important breeding material with excellent resistance and stress tolerance. In this study, we characterized the derivative line CH1113-B13-1-1-2-1 (CH1113-B13) through cytological, morphological, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), expressed sequence tag (EST), and PCR-based landmark unique gene (PLUG) marker analysis. The GISH analysis revealed that CH1113-B13 contained 20 pairs of common wheat chromosomes and one pair of JSt genomic chromosomes. Linkage analysis of Th. ponticum using seven EST and seven PLUG markers indicated that the pair of alien chromosomes belonged to the seventh homeologous group. Nulli-tetrasomic and FISH analysis revealed that wheat 7B chromosomes were absent in CH1113-B13; thus, CH1113-B13 was identified as a 7JSt (7B) substitution line. Finally, adult-stage CH1113-B13 exhibited immunity to wheat stripe rust. This substitution line is therefore a promising germplasm resource for wheat breeding.


Subject(s)
Poaceae/genetics , Triticum/genetics , Triticum/microbiology , Basidiomycota/pathogenicity , Crosses, Genetic , Disease Resistance/genetics , Electrophoresis , Expressed Sequence Tags , Genetic Linkage , Genetic Markers , In Situ Hybridization , In Situ Hybridization, Fluorescence , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology
14.
Genome ; 60(5): 375-383, 2017 May.
Article in English | MEDLINE | ID: mdl-28177840

ABSTRACT

Leymus mollis (Trin.) Pilg. (2n = 4x = 28, NsNsXmXm) possesses a number of valuable genes against biotic and abiotic stress, which could be transferred into common wheat background for wheat improvement. In the present study, we determined the karyotypic constitution of a wheat - L. mollis double disomic addition line, M11003-4-4-1-1, selected from the F5 progeny of a stable wheat - L. mollis derivative M39 (2n = 56) × Triticum aestivum cultivar 7182, by morphological and cytogenetic identification, GISH (genomic in situ hybridization), FISH (fluorescent in situ hybridization), molecular markers analysis, and stripe rust resistance evaluation. Cytological studies demonstrated that M11003-4-4-1-1 had a chromosome karyotype of 2n = 46 with 23 bivalents, while GISH and FISH analysis indicated that this line contained 42 common wheat chromosomes and two pairs of L. mollis chromosomes. DNA markers showed that the alien chromosomes from L. mollis belonged to homoeologous groups 5 and 6. Evaluation of the agronomic traits revealed that M11003-4-4-1-1 was resistant to stripe rust at the adult stage, while the plant height was reduced and the 1000-grain weight was increased significantly. Therefore, the new line M11003-4-4-1-1 could be exploited as an important bridge material in chromosome engineering and wheat breeding.


Subject(s)
Cytogenetic Analysis/methods , Disease Resistance/genetics , Plant Diseases/genetics , Poaceae/genetics , Triticum/genetics , Basidiomycota/physiology , Chromosomes, Plant/genetics , Genome, Plant/genetics , Hybrid Vigor/genetics , Hybridization, Genetic , In Situ Hybridization , In Situ Hybridization, Fluorescence , Karyotype , Plant Breeding/methods , Plant Diseases/microbiology , Poaceae/growth & development , Poaceae/microbiology , Triticum/growth & development , Triticum/microbiology
15.
PLoS One ; 11(12): e0167304, 2016.
Article in English | MEDLINE | ID: mdl-27936004

ABSTRACT

Fusarium crown rot (FCR), caused by various Fusarium species, is a chronic disease of cereals in many semi-arid regions worldwide. To clarify what effects drought-stress may have on FCR development, visual assessment, histological analysis and quantitative PCR were used to analyse the infection process of F. pseudograminearum in barley. This study observed for the first time that the severity of FCR symptom reflects the quantity of pathogens in infected tissues of barley under both drought-stressed and well-watered conditions. Drought-stress prolongs the initial infection phase but enhances the proliferation and spread of Fusarium pathogens after the initial infection phase. Under drought-stressed conditions, the invading hyphae were frequently observed to re-emerge from stomata and invade again the surrounding epidermis cells. Under the well-watered conditions, however, very few hyphae re-emerged from stomata and most infection was caused by hyphae intracellularly grown. It was also observed that drought-stress increased the length and density of trichomes dramatically especially in the susceptible genotypes, and that the length and density of trichomes were positively related to fungal biomass of F. pseudograminearum in plants.


Subject(s)
Fusarium/physiology , Hordeum/microbiology , Hordeum/physiology , Plant Diseases/microbiology , Water/metabolism , Biomass , Droughts , Genotype , Hordeum/genetics , Hordeum/ultrastructure , Hyphae/physiology , Plant Diseases/genetics , Stress, Physiological
16.
Genome ; 59(4): 277-88, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27021228

ABSTRACT

Alien addition lines are important for transferring useful genes from alien species into common wheat. Rye is an important and valuable gene resource for improving wheat disease resistance, yield, and environment adaptation. A new wheat-rye addition line, N9436B, was developed from the progeny of the cross of common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) cultivar Shaanmai 611 and rye (Secale cereal L., 2n = 2x = 14, RR) accession Austrian rye. We characterized this new line by cytology, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), molecular markers, and disease resistance screening. N9436B was stable in morphology and cytology, with a chromosome composition of 2n = 42 + 2t = 22II. GISH investigations showed that this line contained two rye chromosomes. GISH, FISH, and molecular maker identification suggested that the introduced R chromosome and the missing wheat chromosome arms were 1R chromosome and 2DL chromosome arm, respectively. N9436B exhibited 30-37 spikelets per spike and a high level of resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) isolate E09 at the seedling stage. N9436B was cytologically stable, had the trait of multiple spikelets, and was resistant to powdery mildew; this line should thus be useful in wheat improvement.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Secale/genetics , Triticum/genetics , Ascomycota , Chromosomes, Plant/genetics , Cytogenetic Analysis , Genetic Markers , Hybridization, Genetic , Karyotype , Plant Breeding , Plant Diseases/microbiology , Secale/microbiology , Triticum/microbiology
17.
BMC Genomics ; 17: 238, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26980266

ABSTRACT

BACKGROUND: Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Increasingly evidences suggest that long intergenic ncRNAs (lincRNAs) are developmentally regulated and play important roles in development and stress responses of plants. However, identification of lincRNAs in wheat is still limited comparing with functional gene expression. RESULTS: The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR31 and Bgt race E09 at 1, 2, and 3 days post-inoculation was recapitulated to detect the lincRNAs. Here, 283 differential expressed lincRNAs were identified from 58218 putative lincRNAs, which account for 31.2% of transcriptome. Of which, 254 DE-LincRNAs responded to the Bgt stress, and 52 lincRNAs in Pst. Among them, 1328 SnRNP motifs (sm sites) were detected and showed RRU4-11RR sm site element and consensus RRU1-9VU1-7RR SnRNP motifs, where the total number of uridine was more than 3 but less than 11. Additionally, 101 DE-lincRNAs were predicted as targets of miRNA by psRNATarget, while 5 target mimics were identified using target mimicry search in TAPIR. CONCLUSIONS: Taken together, our findings indicate that the lincRNA of wheat responded to Bgt and Pst stress and played important roles in splicesome and inter-regulating with miRNA. The sm site of wheat showed a more complex construction than that in mammal and model plant. The mass sequence data generated in this study provide a cue for future functional and molecular research on wheat-fungus interactions.


Subject(s)
Host-Pathogen Interactions , Plant Diseases/genetics , RNA, Long Noncoding/genetics , Triticum/genetics , Ascomycota , Basidiomycota , Chromosome Mapping , MicroRNAs/genetics , Plant Diseases/microbiology , RNA, Plant/genetics , Transcriptome , Triticum/microbiology
18.
Theor Appl Genet ; 129(2): 369-76, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26649867

ABSTRACT

KEY MESSAGE: YrSM139-1B maybe a new gene for effective resistance to stripe rust and useful flanking markers for marker-assisted selection were developed. ABSTRACT: Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important foliar disease of wheat. Two dominant stripe rust resistant genes YrSM139-1B and YrSM139-2D were pyramided in bread wheat cultivar Shaanmai 139; one from wild emmer and the other from Thinopyrum intermedium. Three near-isogenic F7:8 line pairs (contrasting RILs), N122-1013R/S, N122-185R/S, and N122-1812R/S, independently derived from different F2 plants and differing at the YrSM139-1B locus were generated from the cross Shaanmai 139 × Hu 901-19 through marker-assisted selection. A large F2:3 population from cross N122-1013R × N122-1013S tested for stripe rust response and subjected to analysis with markers in the 1BS10-0.5 bin region using SSR expressed sequence tags (EST) and site-specific sequence markers developed from the 90 K Illumina iSelect SNP array. Five EST-STS markers and four allele-specific PCR markers were mapped to the YrSM139-1B region. The 30.5 cM genetic map for YrSM139-1B consisted of nine markers, two of which were closer to YrSM139-1B than Xgwm273, which was used in producing the contrasting RIL pairs. Race response data and allelism tests showed that YrSM139-1B is different from Yr10, Yr15, and Yr24/26/CH42.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Triticum/genetics , Alleles , Basidiomycota , Chromosome Mapping , DNA, Plant/genetics , Expressed Sequence Tags , Genetic Markers , Microsatellite Repeats , Plant Diseases/microbiology , Sequence Tagged Sites , Triticum/microbiology
19.
BMC Genomics ; 15: 898, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25318379

ABSTRACT

BACKGROUND: Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Similar mechanisms and gene transcripts are assumed to be involved in the host defense response because both pathogens are biotrophic fungi. The main objective of our study was to identify co-regulated mRNAs that show a change in expression pattern after inoculation with Pst or Bgt, and to identify mRNAs specific to the fungal stress response. RESULTS: The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR 31 was compared with that of the same line inoculated with Bgt race E09 at 1, 2, and 3 days post-inoculation. Infection by Pst and Bgt affected transcription of 23.8% of all T. aestivum genes. Infection by Bgt triggered a more robust alteration in gene expression in N9134 compared with the response to Pst infection. An array of overlapping gene clusters with distinctive expression patterns provided insight into the regulatory differences in the responses to Bgt and Pst infection. The differentially expressed genes were grouped into seven enriched Kyoto Encyclopedia of Genes and Genomes pathways in Bgt-infected leaves and four pathways in Pst-infected leaves, while only two pathways overlapped. In the plant-pathogen interaction pathway, N9134 activated a higher number of genes and pathways in response to Bgt infection than in response to Pst invasion. Genomic analysis revealed that the wheat genome shared some microbial genetic fragments, which were specifically induced in response to Bgt and Pst infection. CONCLUSIONS: Taken together, our findings indicate that the responses of wheat N9134 to infection by Bgt and Pst shows differences in the pathways and genes activated. The mass sequence data for wheat-fungus interaction generated in this study provides a powerful platform for future functional and molecular research on wheat-fungus interactions.


Subject(s)
Ascomycota/physiology , Basidiomycota/physiology , Plant Diseases/microbiology , Plant Proteins/genetics , Triticum/microbiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Oligonucleotide Array Sequence Analysis , Plant Leaves/genetics , Plant Leaves/microbiology , Signal Transduction , Triticum/anatomy & histology , Triticum/genetics
20.
Genome ; 57(2): 89-95, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24702066

ABSTRACT

As an important group in Triticum, tetraploid wheat plays a significant role in the research of wheat evolution. Several complete aneuploid sets of common wheat have provided valuable tools for genetic and breeding studies, while similar aneuploids of tetraploid wheat are still not well developed. Here, 12 double ditelosomics developed in Triticum turgidum L. var. durum cultivar DR147 (excluding dDT2B and dDT3A) were reported. Hybrids between DR147 and the original double-ditelosomic dDT2B of Langdon lost vigor and died prematurely after the three-leaf stage; therefore, the dDT2B line was not obtained. The cytogenetic behaviors and phenotypic characteristics of each line were detailedly described. To distinguish the entire chromosome complement of tetraploid wheat, the DR147 karyotype was established by fluorescence in situ hybridization (FISH), using the Aegilops tauschii clone pAsl and the barley clone pHvG38 as probes. FISH using a cereal-specific centromere repeat (6C6) probe suggested that all the lines possessed four telosomes, except for 4AS of double-ditelosomic dDT4A, which carried a small segment of the long arm. On the basis of the idiogram of DR147, these lines were successfully discriminated by FISH using the probes pAsl and pHvG38 and were then accurately designated.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant/genetics , Triticum/genetics , Chimera/genetics , In Situ Hybridization, Fluorescence , Karyotype , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...