Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 61(2): 821-834, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37668965

ABSTRACT

Accumulating evidence has suggested that the gut microbiome plays an important role in depression. Akkermansia muciniphila (AKK), a next-generation probiotic, shows a beneficial effect on immune and metabolic homeostasis. The relative abundance of AKK was found negatively correlated with depressive symptoms in both clinical and pre-clinical studies. To evaluate the potential antidepressant effect of AKK and explore the possible mechanism, we used chronic alcohol exposure and chronic unpredictable mild stress (CUMS) to induce depressive-like behaviors in mice. We found that oral AKK administration significantly reduced the immobility time in the force swimming test (FST) and tail suspension test (TST) in the mice with chronic alcohol exposure and the CUMS mice. The sucrose preference in the mice receiving AKK was significantly increased in the sucrose preference test (SPT). More importantly, AKK implantation significantly increased the level of 5-HT in the gut and PFC of both the alcohol exposure mice and the CUMS mice. Furthermore, AKK had inhibited the expression of SERT in the gut but not in the brain for both NIAAA and the CUMS model mice. Interestingly, the expression of cFos in enteric nerves in the gut significantly decreased after AKK administration. In conclusion, our study demonstrated the antidepressant effect of AKK in mice exposed to alcohol exposure and CUMS, with the potential mechanism that AKK implantation might lead to an increased level of 5-HT and inhibited SERT expression in the gut, and might alter the gut-to-brain signal through suppression of enteric nerves activation.


Subject(s)
Depression , Serotonin , Mice , Animals , Depression/drug therapy , Depression/metabolism , Serotonin/metabolism , Brain/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/metabolism , Sucrose/metabolism , Sucrose/pharmacology , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Disease Models, Animal , Hippocampus/metabolism , Akkermansia
2.
Biochem Biophys Res Commun ; 558: 86-93, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33906111

ABSTRACT

Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP superfamily. Previous studies have demonstrated that TRPV3 is associated with myocardial fibrosis. However, the role of TRPV3 in hepatic fibrosis and its underlying mechanisms are still unclear. This study aimed to elucidate the underlying effects of TRPV3 on hepatic fibrosis at multiple biological levels. First, immunohistochemical staining was performed to examine TRPV3 expression in human hepatic cirrhosis tissues. Then, we established a CCl4-induced hepatic fibrosis mouse model. The TRPV3 selective agonist drofenine and its inhibitor, forsythoside B, were intraperitoneally injected to investigate the relationship between TRPV3 and liver fibrosis progression. Finally, in vitro studies were performed using hepatic stellate cells (HSCs) to discover the potential molecular biological mechanisms. Immunohistochemistry revealed TRPV3 overexpression in liver cirrhosis. In the liver fibrosis groups, TRPV3 inhibitor treatment significantly reduced liver fibrosis, while TRPV3 agonist exacerbated its progression. In HSCs, knocking down TRPV3 with siRNA impaired DNA synthesis and cell proliferation and increased cell apoptosis. Furthermore, we found that knockdown of TRPV3 could reduce the lectin like oxidized lowdensity lipoprotein receptor-1 (LOX-1) protein levels. Our research suggests that lower expression or functional levels of TRPV3 can ameliorate the inflammatory response and fibrotic tissue proliferation.


Subject(s)
Liver Cirrhosis, Experimental/drug therapy , TRPV Cation Channels/antagonists & inhibitors , Animals , Caffeic Acids/pharmacology , Carbon Tetrachloride/toxicity , Cells, Cultured , Disease Models, Animal , Gene Knockdown Techniques , Glucosides/pharmacology , Hepatic Stellate Cells/metabolism , Humans , Immunohistochemistry , Liver Cirrhosis/metabolism , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/metabolism , Male , Mice , Mice, Inbred C57BL , Phenylacetates/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Up-Regulation
3.
PeerJ ; 9: e10943, 2021.
Article in English | MEDLINE | ID: mdl-33665036

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and the fourth leading cause of cancer-related deaths in the world. Although the treatment of HCC has made great progress in recent years, the therapeutic effects on HCC are still unsatisfactory due to difficulty in early diagnosis, chemoresistance and high recurrence rate post-surgery. METHODS: In this study, we identified differentially expressed genes (DEGs) based on four Gene Expression Omnibus (GEO) datasets (GSE45267, GSE98383, GSE101685 and GSE112790) between HCC and normal hepatic tissues. A protein-protein interaction (PPI) network was established to identify the central nodes associated with HCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the central nodes were conducted to find the hub genes. The expression levels of the hub genes were validated based on the ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Additionally, the genetic alterations of the hub genes were evaluated by cBioPortal. The role of the hub genes on the overall survival (OS) and relapse survival (RFS) of HCC patients was evaluated by Kaplan-Meier plotter. At last, the mechanistic role of the hub genes was illustrated by in vitro experiments. RESULTS: We found the following seven hub genes: BUB1B, CCNB1, CCNB2, CDC20, CDK1, MAD2L1 and RRM2 using integrated bioinformatics analysis. All of the hub genes were significantly upregulated in HCC tissues. And the seven hub genes were associated with the OS and RFS of HCC patients. Finally, in vitro experiments indicated that BUB1B played roles in HCC cell proliferation, migration, invasion, apoptosis and cell cycle by partially affecting mitochondrial functions. CONCLUSIONS: In summary, we identified seven hub genes that were associated with the expression and prognosis of HCC. The mechanistic oncogenic role of BUB1B in HCC was first illustrated. BUB1B might play an important role in HCC and could be potential therapeutic targets for HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...