Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 579
Filter
1.
Int J Biol Macromol ; : 133780, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992525

ABSTRACT

The properties and structure of gluten protein with different deacetylation degrees of konjac glucomannan (KGM) were investigated, in an attempt to improve the quality of gluten protein in flour products. Results showed that deacetylated KGM (DKGM) could improve the textural properties and enhance the thermal stability of gluten protein. DKGM increased the water holding capacity and shortened the T2 relaxation time of gluten after removing some acetyl groups. As the deacetylation degree increased, the hardness and adhesiveness of gluten gels gradually increased, while the springiness decreased. In addition, the presence of DKGM promoted the conversion from free sulfhydryl to disulfide bonds and increased the ß-sheet content in gluten protein. The low-deacetylation KGM decreased the surface hydrophobicity and fluorescence intensity of gluten protein, and the microstructures of gluten gels became more compact. Compared with gluten protein-KGM complex gel, the degradation temperature of gluten protein-DKGM complex gels was observed to increase by >3 °C. Overall, the low-deacetylation KGM was beneficial for improving the physicochemical properties and maintaining the network structure of gluten protein. This study provides valuable references and practical insights to improve gluten quality in the flour industry.

2.
Food Chem ; 459: 140429, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39024880

ABSTRACT

The ideal physicochemical properties of bigels are important for food applications. Therefore, a new bigel was prepared based on mixed beef tallow and soybean oil oleogel and deacetylated konjac glucomannan (KGM) hydrogel. The effect of the deacetylation degree of KGM on the physicochemical properties and microstructure of bigels was studied. The bigel containing moderate deacetylation degree of KGM had better rheological properties and hardness (319.84 g) than that with low and high deacetylation degrees of KGM. The interactions among the bigel components were analyzed by Fourier transform infrared spectroscopy and molecular dynamics simulation, indicating that the formation of the bigels was dominated by electrostatic interactions. Overall, the bigels containing moderate deacetylation degree of KGM had better physical properties, which may provide a theoretical foundation to develop bigels with low cholesterol, trans and saturated fats levels to replace traditional solid fats in food industry.

3.
Front Oncol ; 14: 1332314, 2024.
Article in English | MEDLINE | ID: mdl-39026974

ABSTRACT

In locally advanced esophageal cancer, the controversy over the two traditional treatment modalities, neoadjuvant radiotherapy and neoadjuvant chemotherapy, has been unending and also challenged by the addition of neoadjuvant immunotherapy. Neoadjuvant immunotherapy has led to an increasing diversity of neoadjuvant combination treatment modalities, among which neoadjuvant immunochemotherapy has emerged, with current clinical studies initially demonstrating its efficacy and safety. We report a case of a patient with locally advanced esophageal cancer who underwent two cycles of neoadjuvant immunochemotherapy and successful surgery and achieved a pathological complete response (pCR). A 73-year-old elderly female patient presented with progressive dysphagia for more than 1 month with an Eastern Cooperative Oncology Group (ECOG) score of 1. After completing gastroscopy + pathological biopsy, chest enhanced CT, barium esophageal meal, PET-CT, and other related examinations, the clinical diagnosis was thoracic segmental esophageal poorly differentiated squamous carcinoma cT2N2M0 stage III. After a multidisciplinary discussion of the comprehensive treatment plan, two cycles of neoadjuvant therapy were given on February 16, 2023, and March 9, 2023, and the treatment plan was as follows: cisplatin 30 mg d1-3 + albumin paclitaxel 200 mg d1 and 100 mg d8 + sintilimab 200 mg d4, q3w. After the neoadjuvant therapy, the patient underwent an imaging examination. The chest enhanced CT suggested that the lesion range was significantly reduced compared with the previous scan, and mediastinal lymph nodes were partially reduced. Then, thoracoscopic radical esophageal cancer surgery was performed on April 23, 2023. pCR was achieved by pathological evaluation, and the postoperative diagnosis was thoracic segmental esophageal hypofractionated squamous carcinoma ypT0N0M0. Two cycles of adjuvant immunochemotherapy were performed after surgery on May 30, 2023, and June 21, 2023, and the regimen was as follows: cisplatin 30 mg d1-3 + albumin paclitaxel 200 mg d1 and 100 mg d8 + sindilizumab 200 mg d4, q3w. As of the latest review on March 20, 2024, the patient was not seen to have any significant postoperative complications and remains in a state of complete response (CR). Neoadjuvant immunochemotherapy has positive significance for the treatment of patients with locally advanced esophageal cancer. Whether neoadjuvant immunochemotherapy can replace neoadjuvant synchronous radiotherapy is a future direction of research, which needs to be further verified by more reliable clinical trials.

4.
Am J Otolaryngol ; 45(5): 104373, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38838480

ABSTRACT

BACKGROUND: With advancements in medicine and economy, it would be expected that there will be changes in the clinical characteristics of upper respiratory papillomatosis. The aim of this study was to examine the current clinical characteristics of upper respiratory papillomatosis, as there are no recent data in the literature. METHODS: The medical records of 1894 patients with upper respiratory papillomatosis were retrospectively reviewed. Data extracted included clinical features, laryngoscopy images, and surgical procedure data. RESULTS: The upper frequency of upper respiratory papillomatosis in the oropharynx was 69.1 %, and in the larynx was held 28.9 %. The overall postoperative relapse rate was 2.4 %. The relapse rate of laryngeal papillomatosis was 6.5 %. Approximately 2.6 % of cases were in children. All postoperative recurrences in children were laryngeal, and the recurrence rate was 30.4 %. CONCLUSION: The oropharynx has the highest frequency of upper respiratory papillomatosis. The larynx, however, has the highest rate of postoperative recurrence. Compared to adults, children are more likely to experience a postoperative recurrence.

5.
Cell Death Dis ; 15(6): 392, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834617

ABSTRACT

Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.


Subject(s)
Cell Differentiation , Cell Proliferation , Fructose-Bisphosphatase , Histones , Keratinocytes , Psoriasis , Animals , Humans , Mice , Acetyl Coenzyme A/metabolism , Acetylation , Disease Models, Animal , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphatase/genetics , Glycolysis , Histones/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Mice, Inbred C57BL , Psoriasis/pathology , Psoriasis/metabolism , Psoriasis/genetics
6.
Genes (Basel) ; 15(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38927664

ABSTRACT

Chilling stress is one of the main abiotic factors affecting rice growth and yield. In rice, chlorophyllide a oxygenase encoded by OsCAO1 is responsible for converting chlorophyllide a to chlorophyllide b, playing a crucial role in photosynthesis and thus rice growth. However, little is known about the function of OsCAO1 in chilling stress responses. The presence of the cis-acting element involved in low-temperature responsiveness (LTR) in the OsCAO1 promoter implied that OsCAO1 probably is a cold-responsive gene. The gene expression level of OsCAO1 was usually inhibited by low temperatures during the day and promoted by low temperatures at night. The OsCAO1 knockout mutants generated by the CRISPR-Cas9 technology in rice (Oryza sativa L.) exhibited significantly weakened chilling tolerance at the seedling stage. OsCAO1 dysfunction led to the accumulation of reactive oxygen species and malondialdehyde, an increase in relative electrolyte leakage, and a reduction in antioxidant gene expression under chilling stress. In addition, the functional deficiency of OsCAO1 resulted in more severe damage to chloroplast morphology, such as abnormal grana thylakoid stacking, caused by low temperatures. Moreover, the rice yield was reduced in OsCAO1 knockout mutants. Therefore, the elevated expression of OsCAO1 probably has the potential to increase both rice yield and chilling tolerance simultaneously, providing a strategy to cultivate chilling-tolerant rice varieties with high yields.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Seedlings , Oryza/genetics , Oryza/growth & development , Seedlings/genetics , Seedlings/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Cold-Shock Response/genetics , Gene Knockout Techniques , Reactive Oxygen Species/metabolism , Chlorophyll/metabolism , Photosynthesis/genetics
7.
Cell Death Dis ; 15(6): 446, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914543

ABSTRACT

Protein homeostasis is predominantly governed through post-translational modification (PTM). UBE3B, identified as an oncoprotein, exhibits elevated protein levels in breast cancer. However, the impact of PTM on UBE3B remains unexplored. In this study, we show that VHL is a bona fide E3 ligase for UBE3B. Mechanistically, VHL directly binds to UBE3B, facilitating its lysine 48 (K48)-linked polyubiquitination at K286 and K427 in a prolyl hydroxylase (PHD)-independent manner. Consequently, this promotes the proteasomal degradation of UBE3B. The K286/427R mutation of UBE3B dramatically abolishes the inhibitory effect of VHL on breast tumor growth and lung metastasis. Additionally, the protein levels of UBE3B and VHL exhibit a negative correlation in breast cancer tissues. These findings delineate an important layer of UBE3B regulation by VHL.


Subject(s)
Breast Neoplasms , Ubiquitin-Protein Ligases , Ubiquitination , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , HEK293 Cells , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Nude , Neoplasm Metastasis , Protein Binding , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics
8.
Int J Biol Macromol ; 275(Pt 1): 133403, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917926

ABSTRACT

Nasopharyngeal carcinoma (NPC), a malignant cancer originating from the epithelial cells of the nasopharynx, presents diagnostic challenges with current methods such as plasma Epstein-Barr virus (EBV) DNA testing showing limited efficacy. This study focused on identifying small extracellular vesicle (sEV) proteins as potential noninvasive biomarkers to enhance NPC diagnostic accuracy. We isolated sEVs from plasma and utilized 4D label-free proteomics to identify differentially expressed proteins (DEPs) among healthy controls (NC = 10), early-stage NPC (E-NPC = 10), and late-stage NPC (L-NPC = 10). Eighteen sEV proteins were identified as potential biomarkers. Subsequently, parallel reaction monitoring (PRM) proteomic analysis preliminarily confirmed sEV carbonic anhydrase 1 (CA1) as a highly promising biomarker for NPC, particularly in early-stage diagnosis (NC = 15; E-NPC = 10; L-NPC = 15). To facilitate this, we developed an automated, high-throughput and highly sensitive CA1 immune-chemiluminescence chip technology characterized by a broad linear detection range and robust controls. Further validation in an independent retrospective cohort (NC = 89; E-NPC = 39; L-NPC = 172) using this technology confirmed sEV CA1 as a reliable diagnostic biomarker for NPC (AUC = 0.9809) and E-NPC (AUC = 0.9893), independent of EBV-DNA testing. Notably, sEV CA1 exhibited superior diagnostic performance compared to EBV-DNA, with a significant incremental net reclassification improvement of 27.61 % for NPC and 72.11 % for E-NPC detection. Thus, this study identifies sEV CA1 as an innovative diagnostic biomarker for NPC and E-NPC independent of EBV-DNA. Additionally, it establishes an immune-chemiluminescence chip technology for the detection of sEV CA1 protein, paving the way for further validation and clinical application.

9.
Food Chem ; 453: 139599, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788640

ABSTRACT

In this study, oxidized deacetylated konjac glucomannans with different degrees of oxidation were prepared by a combination of deacetylation and ozone oxidation. Carboxyl groups were found to be introduced into the modified konjac glucomannan while acetyl groups were removed. The backbone, branched chains, and crystal structure of modified konjac glucomannan were not significantly affected. The whiteness was enhanced to 97-99 % and the thermal degradation temperature was up to 250 °C after modification. The solubility of the modified konjac glucomannan (oxidized for 60 min) was significantly increased to 84.56 % (p < 0.05), while its viscosity and swelling power were notably decreased owing to the changes in molecular weight (from 106 to 104) and functional groups. Rheological analysis showed that oxidized deacetylated konjac glucomannan has the ability to form soft-textured gels and the potential to develop dysphagia foods. Future studies should focus on the gelation mechanisms of oxidized deacetylated konjac glucomannan.


Subject(s)
Gels , Mannans , Oxidation-Reduction , Ozone , Rheology , Mannans/chemistry , Viscosity , Ozone/chemistry , Gels/chemistry , Acetylation , Molecular Weight , Solubility , Amorphophallus/chemistry
10.
Research (Wash D C) ; 7: 0379, 2024.
Article in English | MEDLINE | ID: mdl-38779490

ABSTRACT

Cement-based materials are the foundation of modern buildings but suffer from intensive energy consumption. Utilizing cement-based materials for efficient energy storage is one of the most promising strategies for realizing zero-energy buildings. However, cement-based materials encounter challenges in achieving excellent electrochemical performance without compromising mechanical properties. Here, we introduce a biomimetic cement-based solid-state electrolyte (labeled as l-CPSSE) with artificially organized layered microstructures by proposing an in situ ice-templating strategy upon the cement hydration, in which the layered micropores are further filled with fast-ion-conducting hydrogels and serve as ion diffusion highways. With these merits, the obtained l-CPSSE not only presents marked specific bending and compressive strength (2.2 and 1.2 times that of traditional cement, respectively) but also exhibits excellent ionic conductivity (27.8 mS·cm-1), overwhelming most previously reported cement-based and hydrogel-based electrolytes. As a proof-of-concept demonstration, we assemble the l-CPSSE electrolytes with cement-based electrodes to achieve all-cement-based solid-state energy storage devices, delivering an outstanding full-cell specific capacity of 72.2 mF·cm-2. More importantly, a 5 × 5 cm2 sized building model is successfully fabricated and operated by connecting 4 l-CPSSE-based full cells in series, showcasing its great potential in self-energy-storage buildings. This work provides a general methodology for preparing revolutionary cement-based electrolytes and may pave the way for achieving zero-carbon buildings.

11.
BMC Plant Biol ; 24(1): 387, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724946

ABSTRACT

BACKGROUND: Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms. RESULTS: The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter. CONCLUSION: Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.


Subject(s)
Nitrogen , Plant Leaves , Plant Leaves/physiology , Plant Leaves/genetics , Nitrogen/metabolism , Sasa/genetics , Sasa/physiology , Poaceae/genetics , Poaceae/physiology , Phosphorus/metabolism , Phylogeny , Bayes Theorem
12.
Antioxidants (Basel) ; 13(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790697

ABSTRACT

High temperature is a significant environmental stress that limits plant growth and agricultural productivity. GDSL lipase is a hydrolytic enzyme with a conserved GDSL sequence at the N-terminus, which has various biological functions, such as participating in plant growth, development, lipid metabolism, and stress resistance. However, little is known about the function of the GDSL lipase gene in the heat tolerance of rice. Here, we characterized a lipase family protein coding gene HTA1, which was significantly induced by high temperature in rice. Rice seedlings in which the mutant hta1 was knocked out showed enhanced heat tolerance, whereas the overexpressing HTA1 showed more sensitivity to heat stress. Under heat stress, hta1 could reduce plant membrane damage and reactive oxygen species (ROS) levels and elevate the activity of antioxidant enzymes. Moreover, real-time quantitative PCR (RT-qPCR) analysis showed that mutant hta1 significantly activated gene expression in antioxidant enzymes, heat response, and defense. In conclusion, our results suggest that HTA1 negatively regulates heat stress tolerance by modulating the ROS accumulation and the expression of heat-responsive and defense-related genes in rice seedlings. This research will provide a valuable resource for utilizing HTA1 to improve crop heat tolerance.

13.
J Control Release ; 369: 746-764, 2024 May.
Article in English | MEDLINE | ID: mdl-38599547

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a critical illness characterized by severe lung inflammation. Improving the delivery efficiency and achieving the controlled release of anti-inflammatory drugs at the lung inflammatory site are major challenges in ARDS therapy. Taking advantage of the increased pulmonary vascular permeability and a slightly acidic-inflammatory microenvironment, pH-responsive mineralized nanoparticles based on dexamethasone sodium phosphate (DSP) and Ca2+ were constructed. By further biomimetic modification with M2 macrophage membranes, hybrid mineralized nanovesicles (MM@LCaP) were designed to possess immunomodulatory ability from the membranes and preserve the pH-sensitivity from core nanoparticles for responsive drug release under acidic inflammatory conditions. Compared with healthy mice, the lung/liver accumulation of MM@LCaP in inflammatory mice was increased by around 5.5 times at 48 h after intravenous injection. MM@LCaP promoted the polarization of anti-inflammatory macrophages, calmed inflammatory cytokines, and exhibited a comprehensive therapeutic outcome. Moreover, MM@LCaP improved the safety profile of glucocorticoids. Taken together, the hybrid mineralized nanovesicles-based drug delivery strategy may offer promising ideas for enhancing the efficacy and reducing the toxicity of clinical drugs.


Subject(s)
Anti-Inflammatory Agents , Dexamethasone , Glucocorticoids , Lung , Nanoparticles , Respiratory Distress Syndrome , Animals , Glucocorticoids/administration & dosage , Glucocorticoids/pharmacokinetics , Glucocorticoids/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/pharmacokinetics , Dexamethasone/therapeutic use , Dexamethasone/analogs & derivatives , Tissue Distribution , Nanoparticles/chemistry , Mice , Respiratory Distress Syndrome/drug therapy , Lung/metabolism , Lung/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Macrophages/drug effects , Macrophages/metabolism , Male , Drug Liberation , Pneumonia/drug therapy , Pneumonia/chemically induced , RAW 264.7 Cells , Drug Delivery Systems , Calcium/metabolism , Cytokines/metabolism
14.
Small ; : e2400272, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623970

ABSTRACT

Polymer-in-salt solid-state electrolytes (PIS SSEs) are emerging for high room-temperature ionic conductivity and facile handling, but suffer from poor mechanical durability and large thickness. Here, Al2O3-coated PE (PE/AO) separators are proposed as robust and large-scale substrates to trim the thickness of PIS SSEs without compromising mechanical durability. Various characterizations unravel that introducing Al2O3 coating on PE separators efficiently improves the wettability, thermal stability, and Li-dendrite resistance of PIS SSEs. The resulting PE/AO@PIS demonstrates ultra-small thickness (25 µm), exceptional mechanical durability (55.1 MPa), high decomposition temperature (330 °C), and favorable ionic conductivity (0.12 mS cm-1 at 25 °C). Consequently, the symmetrical Li cells remain stable at 0.1 mA cm-2 for 3000 h, without Li dendrite formation. Besides, the LiFePO4|Li full cells showcase excellent rate capability (131.0 mAh g-1 at 10C) and cyclability (93.6% capacity retention at 2C after 400 cycles), and high-mass-loading performance (7.5 mg cm-2). Moreover, the PE/AO@PIS can also pair with nickel-rich layered oxides (NCM811 and NCM9055), showing a remarkable specific capacity of 165.3 and 175.4 mAh g-1 at 0.2C after 100 cycles, respectively. This work presents an effective large-scale preparation approach for mechanically durable and ultrathin PIS SSEs, driving their practical applications for next-generation solid-state Li-metal batteries.

15.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627785

ABSTRACT

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Subject(s)
Mammary Neoplasms, Animal , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Mice , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , DNA Damage , DNA Repair , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
16.
Infect Drug Resist ; 17: 1447-1457, 2024.
Article in English | MEDLINE | ID: mdl-38628244

ABSTRACT

Background: Urinary tract infection (UTI) associated with Klebsiella pneumoniae poses a serious threat for inpatients. This study aimed to describe the genomic characteristics of K. pneumoniae causing UTI in a tertiary-care hospital in Beijing, China. Methods: A total of 20 K. pneumoniae strains collected from 2020 to 2021 were performed whole-genome sequencing. The Antibiotic susceptibility of 19 common antimicrobial agents was tested against all strains. The multi-locus sequence types (MLSTs) and serotypes were determined from the WGS data. De novo assemblies were used to identify resistance and virulence genes. The presence and characteristics of the plasmids were detected using hybrid assembly of long and short-read data. Results: These K. pneumoniae strains were clustered into nine sequence types (STs) and twelve K-serotypes. All the carbapenem-resistant K. pneumoniae (CRKP) strains acquired carbapenemase blaKPC-2 (n=7). Two CRKP strains exhibited increased resistance to Polymyxin B with MIC ≥ 4 mg/L due to insertion of an IS5-like sequence in the mgrB gene, and they were also involved in a transmission event in Intensive Care Unit. Long-read assemblies identified many plasmids co-carrying multiple replicons. Acquisition of a new IncM2_1 type blaCTX-M-3 positive plasmid was observed after transfer from ICU to neurovascular surgery by comparing the two strains collected from the same patient. Conclusion: K. pneumoniae is a significant pathogen responsible for urinary tract infections. The ST11-KL47 strain, prevalent at our hospital, exhibits a combination of high drug resistance and hypervirulence. It is imperative to enhance ongoing genomic surveillance of urinary tract infection-causing pathogens.

17.
Plants (Basel) ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611475

ABSTRACT

Seed storability has a significant impact on seed vitality and is a crucial genetic factor in maintaining seed value during storage. In this study, RNA sequencing was used to analyze the seed transcriptomes of two rice thermo-sensitive genic male sterile (TGMS) lines, S1146S (storage-tolerant) and SD26S (storage-susceptible), with 0 and 7 days of artificial accelerated aging treatment. In total, 2658 and 1523 differentially expressed genes (DEGs) were identified in S1146S and SD26S, respectively. Among these DEGs, 729 (G1) exhibited similar regulation patterns in both lines, while 1924 DEGs (G2) were specific to S1146S, 789 DEGs (G3) were specific to SD26S, and 5 DEGs (G4) were specific to contrary differential expression levels. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that "translation", "ribosome", "oxidative phosphorylation", "ATP-dependent activity", "intracellular protein transport", and "regulation of DNA-templated transcription" were significantly enriched during seed aging. Several genes, like Os01g0971400, Os01g0937200, Os03g0276500, Os05g0328632, and Os07g0214300, associated with seed storability were identified in G4. Core genes Os03g0100100 (OsPMEI12), Os03g0320900 (V2), Os02g0494000, Os02g0152800, and Os03g0710500 (OsBiP2) were identified in protein-protein interaction (PPI) networks. Seed vitality genes, MKKK62 (Os01g0699600), OsFbx352 (Os10g0127900), FSE6 (Os05g0540000), and RAmy3E (Os08g0473600), related to seed storability were identified. Overall, these results provide novel perspectives for studying the molecular response and related genes of different-storability rice TGMS lines under artificial aging conditions. They also provide new ideas for studying the storability of hybrid rice.

18.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38668214

ABSTRACT

To solve the problem that zinc oxide nanorods (ZnO NRs)-based self-powered ultraviolet (UV) photodetectors cannot obtain both higher responsiveness and shorter response time, P(EDOS-TTh) was prepared using 3,4-ethylenedioxyselenphene (EDOS) and terthiophene (TTh) as copolymers, which modify the ZnO NRs surface, and the ZnO/P(EDOS-TTh) P-N junction self-powered UV device is assembled. The effect of the number of electrochemical polymerization cycles on the UV photodetection performance of ZnO/P(EDOS-TTh) P-N heterojunction was studied by adjusting the number of electrochemical polymerization cycles at the monomer molar ratio of 1:1. Benefiting from the enhanced built-in electric field of the ZnO/P(EDOS-TTh) interface, balancing photogenerated carriers, and charge separation and transport. The results show that the contact between N-type ZnO NRs and P-type P(EDOS-TTh) is best when the number of polymerization cycles is 3, due to the fact that EDOS-TTh and ZnO NRs form excellent P-N heterojunctions with strong internal electric fields, and the devices show good pyroelectric effect and UV photodetection performance. Under 0 V bias and 0.32 mW/cm2 UV irradiation, the responsivity (R) of ZnO/P(EDOS-TTh) reaches 3.31 mA/W, the detectivity (D*) is 7.25 × 1010 Jones, and the response time is significantly shortened. The rise time is 0.086 s, which exhibited excellent photoelectric properties and stability. UV photodetection performance with high sensitivity and fast response time is achieved.

19.
Polymers (Basel) ; 16(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38674999

ABSTRACT

The branched structures of dendronized polymers can provide good steric stabilization for metal nanoparticle catalysts. In this work, an amphiphilic dendronized copolymer containing hydrophilic branched triethylene glycol moieties and hydrophobic branched ferrocenyl moieties is designed and prepared by one-pot ring-opening metathesis polymerization, and is used as the stabilizer for metal (Au, Ag and Pd) nanoparticles. These metal nanoparticles (Au nanoparticles: 3.5 ± 3.0 nm; Ag nanoparticles: 7.2 ± 4.0 nm; Pd nanoparticles: 2.5 ± 1.0 nm) are found to be highly active in both the 4-nitrophenol reduction and Suzuki-Miyaura reactions. In the 4-nitrophenol reduction, Pd nanoparticles have the highest catalytic ability (TOF: 2060 h-1). In addition, Pd nanoparticles are also an efficient catalyst for Suzuki-Miyaura reactions (TOF: 1980 h-1) and possess good applicability for diverse substrates. The amphiphilic dendronized copolymer will open a new door for the development of efficient metal nanoparticle catalysts.

20.
Food Chem ; 449: 139114, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581782

ABSTRACT

L-Tryptophan (L-Trp) is essential for the human body and can only be obtained externally. It is important to develop a method to efficiently detect L-Trp in food. In this work, ionic liquid (IL) modified poly(3,4-ethylendioxythiophene)/ Titanium carbide (PEDOT/Ti3C2TX) was used as a substrate material to improve detection sensitivity. Molecular imprinted polymers (MIP) film for specific recognition of L-Trp was fabricated on the surface of modified electrodes using electrochemical polymerization. The monitoring results showed that the molecularly imprinted electrochemical sensors (MIECS) exhibited good linearity ranges (10-6 - 0.1 µM and 0.1-100 µM) with a low detection limit (LOD) of 2.09 × 10-7 µM. In addition, the MIECS exhibited remarkable stability, reproducibility, and immunity to interference. A good recovery (93.54-99.59%) was demonstrated in the detection of milk. The sensor was expected to be developed as a highly selective and sensitive portable assay, and applied to the detection of L-Trp in food.


Subject(s)
Electrochemical Techniques , Ionic Liquids , Limit of Detection , Milk , Molecular Imprinting , Polymers , Titanium , Tryptophan , Milk/chemistry , Ionic Liquids/chemistry , Polymers/chemistry , Animals , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Tryptophan/analysis , Tryptophan/chemistry , Titanium/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Molecularly Imprinted Polymers/chemistry , Food Contamination/analysis , Electrodes , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...