Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Research (Wash D C) ; 7: 0379, 2024.
Article in English | MEDLINE | ID: mdl-38779490

ABSTRACT

Cement-based materials are the foundation of modern buildings but suffer from intensive energy consumption. Utilizing cement-based materials for efficient energy storage is one of the most promising strategies for realizing zero-energy buildings. However, cement-based materials encounter challenges in achieving excellent electrochemical performance without compromising mechanical properties. Here, we introduce a biomimetic cement-based solid-state electrolyte (labeled as l-CPSSE) with artificially organized layered microstructures by proposing an in situ ice-templating strategy upon the cement hydration, in which the layered micropores are further filled with fast-ion-conducting hydrogels and serve as ion diffusion highways. With these merits, the obtained l-CPSSE not only presents marked specific bending and compressive strength (2.2 and 1.2 times that of traditional cement, respectively) but also exhibits excellent ionic conductivity (27.8 mS·cm-1), overwhelming most previously reported cement-based and hydrogel-based electrolytes. As a proof-of-concept demonstration, we assemble the l-CPSSE electrolytes with cement-based electrodes to achieve all-cement-based solid-state energy storage devices, delivering an outstanding full-cell specific capacity of 72.2 mF·cm-2. More importantly, a 5 × 5 cm2 sized building model is successfully fabricated and operated by connecting 4 l-CPSSE-based full cells in series, showcasing its great potential in self-energy-storage buildings. This work provides a general methodology for preparing revolutionary cement-based electrolytes and may pave the way for achieving zero-carbon buildings.

2.
Small ; : e2400272, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623970

ABSTRACT

Polymer-in-salt solid-state electrolytes (PIS SSEs) are emerging for high room-temperature ionic conductivity and facile handling, but suffer from poor mechanical durability and large thickness. Here, Al2O3-coated PE (PE/AO) separators are proposed as robust and large-scale substrates to trim the thickness of PIS SSEs without compromising mechanical durability. Various characterizations unravel that introducing Al2O3 coating on PE separators efficiently improves the wettability, thermal stability, and Li-dendrite resistance of PIS SSEs. The resulting PE/AO@PIS demonstrates ultra-small thickness (25 µm), exceptional mechanical durability (55.1 MPa), high decomposition temperature (330 °C), and favorable ionic conductivity (0.12 mS cm-1 at 25 °C). Consequently, the symmetrical Li cells remain stable at 0.1 mA cm-2 for 3000 h, without Li dendrite formation. Besides, the LiFePO4|Li full cells showcase excellent rate capability (131.0 mAh g-1 at 10C) and cyclability (93.6% capacity retention at 2C after 400 cycles), and high-mass-loading performance (7.5 mg cm-2). Moreover, the PE/AO@PIS can also pair with nickel-rich layered oxides (NCM811 and NCM9055), showing a remarkable specific capacity of 165.3 and 175.4 mAh g-1 at 0.2C after 100 cycles, respectively. This work presents an effective large-scale preparation approach for mechanically durable and ultrathin PIS SSEs, driving their practical applications for next-generation solid-state Li-metal batteries.

3.
Chem Rec ; 22(10): e202100294, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35138030

ABSTRACT

Rechargeable batteries and supercapacitors are currently considered as promising electrochemical energy storage (EES) systems to address the energy and environment issues. Self-supported transition metal (Ni, Co, Mn, Mo, Cu, V)-based materials are promising electrodes for EES devices, which offer highly efficient charge transfer kinetics. This review summarizes the latest development of transition metal-based materials with self-supported structures for EES systems. Special focus has been taken on the synthetic methods, the selection of substrates, architectures and chemical compositions of different self-supported nanoarrays in energy storage systems. Finally, the challenges and opportunities of these materials for future development in this field are briefly discussed. We believe that the advancement in self-supported electrode materials would pave the way towards next-generation EES.

4.
Research (Wash D C) ; 2019: 8013285, 2019.
Article in English | MEDLINE | ID: mdl-31912046

ABSTRACT

Highly conductive and stable electrode materials are usually the focus of high-performance supercapacitors. In this work, a unique design of Ni2P@carbon self-supported composite nanowires directly grown on Ni foam was applied for a supercapacitor. The Co3O4 nanowire array was first synthesized on the Ni foam substrate, and the resulting Ni2P@carbon nanocomposite was obtained by hydrothermally coating Co3O4 with the Ni-ethylene glycol complex followed by gaseous phosphorization. We have discovered that the molecular weight of surfactant polyvinylpyrrolidone (PVP) used in the hydrothermal step, as well as the temperature for phosphorization, played very important roles in determining the electrochemical properties of the samples. Specifically, the sample synthesized using PVP with 10 k molecular weight and phosphorized at 300°C demonstrated the best supercapacitive performance among the different samples, with the highest capacitance and most stable cyclic retention. When an asymmetric supercapacitor (ASC) was assembled with this Ni2P@carbon sample as the cathode and activated carbon (AC) as the anode, the ASC device showed excellent capacitances of 3.7 and 1.6 F cm-2 at 2 and 50 mA cm-2, respectively, and it kept a high capacitance of 1.2 F cm-2 after 5000 cycles at a current rate of 25 mA cm-2. In addition, the ASC could reach a high energy density of about 122.8 Wh kg-1 at a power density of 0.15 kW kg-1 and 53.3 Wh kg-1 at the highest power density of 3.78 kW kg-1. Additionally, this device also had the ability to power up 16 red LEDs effortlessly, making it a strong candidate in electrochemical energy storage for practical usage.

5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(3): 873-879, 2017 Jun.
Article in Chinese | MEDLINE | ID: mdl-28641652

ABSTRACT

OBJECTIVE: To explore the value of dynamically monitoring minimal residual disease (MRD) by flow cytometry before and after non-myeloablative allo-HSCT (NST) for prediction of acute leukemia(AL) relapse after transplantation. METHODS: The clinical data of 51 AL patients underwent NST were analyzed retrospectively in Department of Hematology of Affiliated Hospital of Academy of Military Medical Sciences from January 2011 to December 2015. All AL patients achieved the morphologic complete remission of bone marrow before transplantation. The bone marrow samples were collected for monitoring of MRD within 35 days before transplant, every month till 3 months after transplant, every 3 months till 24 months after transplant, and then every 6 months after 2 years of transplant. According to the MRD cutoff value of 0.2%, the AL patients were divided into high level MRD group (18 cases) which was defined as MRD≥0.2% after transplantantion at least for 1 time, and low level MRD group (33 cases) which was defined as MRD<0.2% after transplant all the time. 2 year cumulative relapse rate in 2 groups were compared. RESULTS: Two-year relapse rates were 6.1% and 50% in low-level MRD group and high-level MRD group post NST(P=0.001)respectively. Multivariate analysis indicated that the risk of relapse in high level MRD group was 5.84 times of low level MRD group(P=0.036). MRD≥0.2% post transplant was an independent risk factor for leukemia relapse post NST. The mortality rate was 81.8% and 46.3%(P<0.05) in relapse and non-relapse groups respectively. CONCLUSION: Dynamically monitoring MRD by FCM is a crucial tool for early relapse estimation of acute leukemia in adult patients after allogeneic nonmyeloablative hematopoietic stem cell transplantation. MRD≥0.2% after transplant can be used as a early valuable evidence for predicting relapse and guiding active medical intervention.


Subject(s)
Flow Cytometry , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual , Humans , Prognosis , Recurrence , Transplantation, Homologous
6.
Am J Cancer Res ; 5(4): 1368-81, 2015.
Article in English | MEDLINE | ID: mdl-26101703

ABSTRACT

AIMS: High constitutive expression of Nrf2 has been found in many types of cancers, and this high level of Nrf2 also favors resistance to drugs and radiation. Here we investigate how isoliquiritigenin (ISL), a natural antioxidant, inhibits the Nrf2-dependent antioxidant pathway and enhances the radiosensitivity of HepG2 cells and HepG2 xenografts. RESULTS: Treatment of HepG2 cells with ISL for 6 h selectively enhanced transcription and expression of Keap1. Keap1 effectively induced ubiquitination and degradation of Nrf2, and inhibited translocation of Nrf2 to the nucleus. Consequently, expression of Nrf2 downstream genes was reduced, and the Nrf2-dependent antioxidant system was suppressed. Endogenous ROS was higher than before ISL treatment, causing redox imbalance and oxidative stress in HepG2 cells. Moreover, pretreatment with ISL for 6 h followed by X-ray irradiation significantly increased γ-H2AX foci and cell apoptosis, and reduced clonogenic potential compared with cells irradiated with X-rays alone. In addition, HepG2 xenografts, ISL, and X-ray co-treatments induced greater apoptosis and tumor growth inhibition, when compared with X-ray treatments alone. Additionally, HepG2 xenografts, in which Nrf2 was expressed at very low levels due to ectopic expression of Keap1, showed that ISL-mediated radiosensitization was Keap1 dependent. INNOVATION AND CONCLUSIONS: ISL inhibited the Nrf2-antioxidant pathway by increasing the levels of Keap1 and ultimately inducing oxidative stress via disturbance of the redox status. The antioxidant ISL possessed pro-oxidative properties, and enhanced the radiosensitivity of liver cancer cells, both in vivo and in vitro. Taken together, these results demonstrated the effectiveness of using ISL to decrease radioresistance, suggesting that ISL could be developed as an adjuvant radiosensitization drug. Disturbance of redox status could be a potential target for radiosensitization.

SELECTION OF CITATIONS
SEARCH DETAIL
...