Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Food Chem ; 454: 139753, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38795625

ABSTRACT

The utilization of cold plasma (CP) treatment to promote covalent conjugation of ovalbumin (OVA) and gallic acid (GA), as well as its functionality, were investigated. Results demonstrated that CP significantly enhanced the covalent grafting of OVA and GA. The maximum conjugation of GA, 24.33 ± 2.24 mg/g, was achieved following 45 s of CP treatment. Covalent conjugation between GA and OVA were confirmed through analyses of total sulfhydryl (-SH) group, Fourier transform infrared (FTIR) spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Unfolding of the OVA molecule occurred upon conjugation with GA, as evidenced by multiple spectroscopy analyses. Additionally, conjugation with GA resulted in significant improvements in the antioxidant activity and emulsifying properties of OVA. This study demonstrated that CP is a robust and sustainable technique for promoting the covalent conjugate of polyphenols and proteins, offering a novel approach to enhance the functional properties of proteins.

2.
Int J Biol Macromol ; 267(Pt 2): 131578, 2024 May.
Article in English | MEDLINE | ID: mdl-38641267

ABSTRACT

The impact of Dielectric-Barrier Discharge (DBD) plasma treatment on the prevention of heat-induced aggregation of Ovalbumin (OVA) and improvement in emulsification properties was investigated. Results highlighted the effective inhibition of thermal aggregation of OVA following exposure to plasma. Structural analysis revealed that the plasma-induced oxidation of sulfhydryl and intermolecular disulfide bonds played a pivotal role in inhibiting the thermal aggregation, considered by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), multiplies spectroscopy, and analysis of dynamic exchange of sulfhydryl-disulfide bonds. Meanwhile, the oxidation of exposed hydrophobic sites due to plasma treatment resulted in the transformation of the OVA molecule's surface from hydrophobic to hydrophilic, contributing significantly to the aggregation inhibition. Additionally, compared to an untreated sample of OVA, almost one-fold increase in emulsifying ability (EAI) and 1.5-fold in emulsifying stability (ESI) was observed after 4 min of plasma treatment. These findings demonstrated that plasma treatment not only enhanced the thermal stability of OVA, but also improved its emulsification properties.


Subject(s)
Emulsions , Hydrophobic and Hydrophilic Interactions , Ovalbumin , Plasma Gases , Animals , Emulsions/chemistry , Hot Temperature , Ovalbumin/chemistry , Oxidation-Reduction , Plasma Gases/chemistry , Protein Aggregates , Female , Chickens
3.
Food Chem ; 363: 130300, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34130101

ABSTRACT

The effect of dielectric barrier discharge (DBD) plasma treatment times from 2 to 5 min at 40 kV on IgG/IgE binding capacity and functionality of soybean glycinin was examined. A substantial reduction in the binding capacity (91.64% for IgG and 81.49% for IgE) was obtained after 5 min of plasma treatment, as determined by western-blot and ELISA analyses. Further studies demonstrated that the elimination of antigenicity and allergenicity of glycinin was directly related to plasma-induced structural changes on two aspects. A conformational alteration caused by oxidation of peptide bond amino groups, accompanied with an oxidation of Trp, Tyr, and Phe amino acid residues, which was confirmed by surface hydrophobicity, multi-spectroscopic analysis, and amino acid analysis. The cleavage of polypeptide chains inevitably partially diminished the linear epitopes, resulting in a primary decline in IgG/IgE binding capacity. Additionally, an increase in the solubility from 10.78 ± 0.35 to 65.96 ± 1.86% and significant increase in the emulsifying ability from 21.08 ± 2.64 to 160.29 ± 4.12 m2/g were observed after treatment of the plasma for 2 min. The present results confirm the potential use of DBD for the production of hypoallergenic soy protein-based products and improving their technical functions such as solubility and emulsifying ability.


Subject(s)
Globulins , Soybean Proteins , Allergens , Immunoglobulin E , Immunoglobulin G
4.
Biomed Pharmacother ; 137: 111348, 2021 May.
Article in English | MEDLINE | ID: mdl-33578237

ABSTRACT

The ergosterol pathway is a prime antifungal target as it is required for fungal survival, yet is not involved in human homeostasis. Methods to study the ergosterol pathway, however, are often time-consuming. The minimum inhibitory concentration (MIC) assay is a simple research tool that determines the lowest concentration at which a novel antimicrobial is active in vitro with limited scope to determine the mechanism of action for a drug. In this study, we show that by adding hydrogen peroxide, an oxidative stressor, or glutathione (GSH), an antioxidant, to modify a commonly performed MIC assay allowed us to screen selectively for new antifungal drugs that target ergosterol biosynthesis in fungi. A human pathogen and dermatophyte, Microsporum gypseum, was used as a test organism. When exposed to ergosterol targeting drugs, the hydrogen peroxide treatment significantly decreased fungal survival by reducing ergosterol in the cell wall, whereas GSH increased survival of M. gypseum. Further, by performing a series of experiments with M. gypseum and Trichophyton rubrum, it was determined that the oxidative stress from hydrogen peroxide causes cell death at different developmental stages based on fungal species. These findings allow us to describe a simple, high-throughput method for simultaneously screening new antifungal drugs for activity and effects on the ergosterol pathway. By using this tool, two isoquinoline alkaloids were discovered to be potent inhibitors of ergosterol biosynthesis in vitro by reducing the amount of ergosterol without affecting the expression of 1,3-ß-glucan. Both compounds also significantly reduced the severity of acanthosis, hyperkeratosis, spongiosis and dermal edema in vivo.


Subject(s)
Alkaloids/pharmacology , Antifungal Agents/pharmacology , Ergosterol/biosynthesis , High-Throughput Screening Assays/methods , Isoquinolines/pharmacology , Alkaloids/therapeutic use , Animals , Antifungal Agents/therapeutic use , Arthrodermataceae/cytology , Arthrodermataceae/drug effects , Benzophenanthridines/pharmacology , Benzophenanthridines/therapeutic use , Disease Models, Animal , Ergosterol/analysis , Female , Glutathione/pharmacology , Guinea Pigs , Hydrogen Peroxide/analysis , Hydrogen Peroxide/pharmacology , Isoquinolines/therapeutic use , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycelium/drug effects , Oxidative Stress/drug effects , Tinea/drug therapy , Tinea/pathology
5.
Rapid Commun Mass Spectrom ; 34(9): e8715, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31886926

ABSTRACT

RATIONALE: Macleaya microcarpa (Maxim.) Fedde belongs to the genus Macleaya of the Papaveraceae family. Benzylisoquinoline alkaloids (BIAs) are considered the main bioactive constituents of M. microcarpa. METHODS: Using high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (HPLC/QTOFMS/MS) we identified BIAs in the aerial parts of M. microcarpa in the early flowering stage. Target profiling and identification of BIAs in the extracted samples from the fresh aerial parts of M. microcarpa were exclusively based on a personal, accurate, mass database of known compounds and the mass spectral fragmentation behavior of Macleaya alkaloids. RESULTS: A total of 97 alkaloids, comprising 7 benzyltetrahydroisoquinolines, 1aporphine, 9 tetraprotoberberines, 3 protoberberines, 2 N-methyltetrahydroprotoberberines, 4 protopines, 47 dihydrobenzophenanthridines, and 24 benzophenanthridines, were identified from the fresh aerial parts of M. microcarpa, and 77 of these were detected for the first time in M. microcarpa. In addition, some of the screened alkaloids were related to the biosynthetic pathways of sanguinarine and chelerythrine. CONCLUSIONS: The integrated method is sensitive and reliable for screening and identifying trace or ultra-trace isoquinoline alkaloids and has contributed to a better understanding of BIAs in the fresh aerial parts of M. microcarpa.

6.
Rapid Commun Mass Spectrom ; 32(17): 1540-1548, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29935083

ABSTRACT

RATIONALE: Tetrahydroberberine (THB), tetrahydrocoptisine (THCP) and tetrahydrocolumbamine (THCB) belong to the tetrahydroprotoberberine (THPB) alkaloids. Most of them have been extensively studied because of their pharmacological activities such as anti-hypertension, anti-arrhythmia, antimicrobial activity and antioxidant. However, limited information on the pharmacokinetics and metabolism of the three alkaloids has been reported. The purpose of this study was to investigate the in vitro metabolism of THB, THCP and THCB in rat liver S9 by using a rapid and accurate high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS) method. METHODS: The incubation mixture was processed with 15% trichloroacetic acid. Chromatographic separation of the three THPB alkaloids and their metabolites was achieved by HPLC/QqTOF-MS and accurate mass measurements of metabolites were automatically performed through data-dependent acquisition in only a 30-min analysis. The detailed structural elucidations of these metabolites were performed by comparing the changes in their accurate molecular masses, elemental compositions and product ions with those of the parent drug. RESULTS: Five, five and four metabolites of THB, THCP and THCB were identified in rat liver S9, respectively. The results show that O-demethylenation of the 9,10-vicinal methoxyl group was the main metabolic pathway of THB and THCB and that demethylenation of the two methylenedioxy groups was the main metabolic pathway of THCP. In addition, minor oxidation and methylation reactions could occur for these alkaloids in rat liver S9. CONCLUSIONS: This was the first investigation of the in vitro metabolism of THB, THCP and THCB in rat liver S9 by using a sensitive and accurate HPLC/QqTOF-MS method. The tentatively proposed metabolic pathways of the three alkaloids will provide a basis for further studies of the in vivo metabolism of the three compounds in animals and humans.


Subject(s)
Berberine Alkaloids/chemistry , Berberine Alkaloids/metabolism , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Animals , Humans , Male , Molecular Structure , Rats
7.
Phytother Res ; 32(1): 19-48, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29130543

ABSTRACT

In the genus Macleaya, Macleaya cordata and Macleaya microcarpa have been recognized as traditional herbs that are primarily distributed in China, North America, and Europe and have a long history of medicinal usage. These herbs have been long valued and studied for detumescence, detoxification, and insecticidal effect. This review aims to provide comprehensive information on botanical, phytochemical, pharmacological, and toxicological studies on plants in the genus Macleaya. Plants from the genus of Macleaya provide a source of bioactive compounds, primarily alkaloids, with remarkable diversity and complex architectures, thereby having attracted attention from researchers. To date, 291 constituents have been identified and/or isolated from this group. These purified compounds and/or crude extract possess antitumor, anti-inflammatory, insecticidal, and antibacterial activities in addition to certain potential toxicities. Macleaya species hold potential for medicinal applications. However, despite the pharmacological studies on these plants, the mechanisms underlying the biological activities of active ingredients derived from Macleaya have not been thoroughly elucidated to date. Additionally, there is a need for research focusing on in vivo medical effects of Macleaya compounds and, eventually, for clinical trials.


Subject(s)
Ethnopharmacology/methods , Phytochemicals/pharmacology , Phytotherapy/methods , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Humans
8.
J Pharm Biomed Anal ; 138: 240-248, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28226282

ABSTRACT

The fruits of Siraitia grosvenorii are considered to be health-promoting because of the diversity of their bioactive ingredients. In the present study, a screening method, using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC-Q-TOF-MS) combined with a screening strategy, has been established. The technology was used to systematically screening the targeted metabolites, primarily from the complex matrix of S. grosvenorii. The compounds were then identified by their exact masses and characteristic fragment ions, in comparison with the fragmentation behaviors of 19 references. Finally, 122 compounds, including 53 flavonols and flavonol glycosides, 59 triterpene glycosides and 10 siraitic acid glycosides, were screened and identified in 10-, 50- and 80-day fruits, roots, stems and leaves of S. grosvenorii. 98 of them were reported for the first time. Additionally, the distribution of all identified components in different parts of the plant was determined and metabolic networks for flavonol and triterpene glycosides were proposed.


Subject(s)
Chromatography, High Pressure Liquid/methods , Flavonols/chemistry , Glycosides/chemistry , Magnoliopsida/chemistry , Mass Spectrometry/methods , Triterpenes/chemistry , Fruit/chemistry
9.
J Pharm Biomed Anal ; 103: 26-34, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25462117

ABSTRACT

Alkaloids in Macleaya microcarpa were characterized systematically by combining liquid chromatography tandem mass spectrometry (LC-MS/MS) with the biosynthetic pathway of isoquinoline alkaloids. The mass spectral fragmentation behaviors of 16 references belonging to eight types of alkaloids that exist in the biosynthetic pathway of isoquinoline were investigated in detail. The benzyltetrahydroisoquinoline and aporphine alkaloids were distinguished by characteristic losses of the NHR1R2 (R1 and R2 represent the substituent groups of the nitrogen atom) radical and the fragment ions below m/z 200. Tetrahydroprotoberberine, N-methyltetrahydroberberine and protopine alkaloids were differentiated by the retro-Diels-Alder (RDA) reaction, α-cleavage and the [M-H2O](+) and [M-CH4](+) ions. Discrimination of protoberberine, benzophenanthridine and dihydrobenzophenanthridine-type alkaloids can be realized through the characteristic [fragment ion-2H](+), [M-H2O](+), [M-CH4](+), [M+H-CH3CH2CH2OH](+) and [M+H-CH3COCH3](+) ions. Forty-one alkaloids, including one benzyltetrahydroisoquinoline, one aporphine, nine protopines, seven protoberberines, one tetrahydroprotoberberine, three N-methyltetrahydroprotoberberines, five benzophenanthridines and fourteen dihydrobenzophenanthridines, were separated and identified simultaneously. Thirty-three of these were reported for the first time in M. microcarpa. The benzyltetrahydroisoquinoline, aporphine, tetrahydroprotoberberine and N-methyltetrahydroprotoberberine-type alkaloids have not been reported previously in M. microcarpa. This method can be applied to the analysis of herbal medicines that possess the biosynthetic pathway of isoquinoline alkaloids.


Subject(s)
Alkaloids/analysis , Chromatography, Liquid/methods , Papaveraceae/chemistry , Tandem Mass Spectrometry/methods , Alkaloids/chemistry
10.
Nat Prod Res ; 28(15): 1165-70, 2014.
Article in English | MEDLINE | ID: mdl-24896808

ABSTRACT

Cucurbitacin C, a bitter substance in Cucumis sativus L., was isolated from green leaves by using phytochemical methods. An analytical method using high-performance liquid chromatography (HPLC) was established for the quantification of cucurbitacin C in different parts of the cucumber plant at different growth periods. Cucurbitacin C was detected in the leaves and stems but not in the female flowers, fruits, roots and leafstalks. The level of cucurbitacin C decreased significantly with the process of young leaves turning old. A new compound named 23,24-dihydrocucurbitacin C, regarded as the next metabolite of cucurbitacin C, was determined unambiguously by HPLC-quadrupole-time-of-flight mass spectrometry and nuclear magnetic resonance.


Subject(s)
Cucumis sativus/chemistry , Triterpenes/isolation & purification , Chromatography, High Pressure Liquid , Flowers/chemistry , Fruit/chemistry , Nuclear Magnetic Resonance, Biomolecular , Plant Leaves/chemistry , Plant Roots/chemistry , Triterpenes/chemistry , Triterpenes/metabolism , Triterpenes/pharmacology
11.
Rapid Commun Mass Spectrom ; 28(9): 1033-44, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24677525

ABSTRACT

RATIONALE: Alkaloids with significant therapeutic effects are the main active constituents of Macleaya cordata, which is a perennial herb plant in the Papaveraceae family. A systematic and novel method for speculating and identifying the structures of alkaloids in M. cordata fruits by high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/Q-TOF-MS) with a screening procedure was reported. METHODS: Investigation of mass spectral fragmentation of alkaloids was carried out based on the tandem mass spectrometry (MS/MS) data analyses of eight reference substances. The skeletons of alkaloids were determined by their ultraviolet spectra (UV) and MS/MS data. The substituent groups of the alkaloids were acquired through a screening procedure developed in our laboratory and MS/MS data. The substituent linkage sites were deduced by MS/MS fragmentation behavior, as well as biosynthetic pathways of related alkaloids. RESULTS: The structures of 21 alkaloids were speculated in this study, 10 of which were reported for the first time in M. cordata. Furthermore, benzyltetrahydroisoquinoline and N-methyltetrahydroprotoberberine-type alkaloids were discovered, which indirectly proved that the biosynthetic pathways of benzophenanthridine alkaloids reported in Eschscholtzia california existed in M. cordata as well. CONCLUSIONS: HPLC/Q-TOF-MS combined with a screening procedure was a systematic and reliable method for speculating and elucidating the structures of alkaloids. This study might be useful for the identification of other compounds in herbal medicines.


Subject(s)
Alkaloids/analysis , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Papaveraceae/chemistry , Tandem Mass Spectrometry/methods , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...