Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Mol Biol Rep ; 51(1): 618, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705956

ABSTRACT

BACKGROUND: Astragalus membranaceus is a plant of the Astragalus genus, which is used as a traditional Chinese herbal medicine with extremely high medicinal and edible value. Astragalus mongholicus, as one of the representative medicinal materials with the same origin of medicine and food, has a rising market demand for its raw materials, but the quality is different in different production areas. Growth-regulating factors (GRF) are transcription factors unique to plants that play important roles in plant growth and development. Up to now, there is no report about GRF in A. mongholicus. METHODS AND RESULTS: This study conducted a genome-wide analysis of the AmGRF gene family, identifying a total of nine AmGRF genes that were classified into subfamily V based on phylogenetic relationships. In the promoter region of the AmGRF gene, we successfully predicted cis-elements that respond to abiotic stress, growth, development, and hormone production in plants. Based on transcriptomic data and real-time quantitative polymerase chain reaction (qPCR) validation, the results showed that AmGRFs were expressed in the roots, stems, and leaves, with overall higher expression in leaves, higher expression of AmGRF1 and AmGRF8 in roots, and high expression levels of AmGRF1 and AmGRF9 in stems. CONCLUSIONS: The results of this study provide a theoretical basis for the further exploration of the functions of AmGRFs in plant growth and development.


Subject(s)
Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Astragalus propinquus/genetics , Astragalus propinquus/metabolism , Multigene Family , Genome, Plant , Gene Expression Profiling/methods , Promoter Regions, Genetic/genetics , Astragalus Plant/genetics , Astragalus Plant/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Stress, Physiological/genetics , Transcriptome/genetics , Plant Growth Regulators/metabolism
2.
Plant Signal Behav ; 19(1): 2355740, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38776425

ABSTRACT

During plant growth and development, the YABBY gene plays a crucial role in the morphological structure, hormone signaling, stress resistance, crop breeding, and agricultural production of plant lateral organs, leaves, flowers, and fruits. Astragalus mongholicus is a perennial herbaceous plant in the legume family, widely used worldwide due to its high medicinal and edible value. However, there have been no reports of the YABBY gene family in A. mongholicus. This study used bioinformatics methods, combined with databases and analysis websites, to systematically analyze the AmYABBY gene family in the entire genome of A. mongholicus and verified its expression patterns in different tissues of A. mongholicus through transcriptome data and qRT-PCR experiments. A total of seven AmYABBY genes were identified, which can be divided into five subfamilies and distributed on three chromosomes. Two pairs of AmYABBY genes may be involved in fragment duplication on three chromosomes. All AmYABBY proteins have a zinc finger YABBY domain, and members of the same group have similar motif composition and intron - exon structure. In the promoter region of the genes, light-responsive and MeJa-response cis-elements are dominant. AmYABBY is highly expressed in stems and leaves, especially AmYABBY1, AmYABBY2, and AmYABBY3, which play important roles in the growth and development of stems and leaves. The AmYABBY gene family regulates the growth and development of A. mongholicus. In summary, this study provides a theoretical basis for in-depth research on the function of the AmYABBY gene and new insights into the molecular response mechanism of the growth and development of the traditional Chinese medicine A. mongholicus.


Subject(s)
Astragalus Plant , Gene Expression Regulation, Plant , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Astragalus Plant/genetics , Astragalus Plant/metabolism , Genome, Plant/genetics , Multigene Family , Phylogeny , Genes, Plant , Promoter Regions, Genetic/genetics
3.
J Agric Food Chem ; 72(20): 11429-11437, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738769

ABSTRACT

Platycodon grandiflorus is a medicinal plant whose main component is platycodins, which have a variety of pharmacological effects and nutritional values. The farnesyl pyrophosphate synthase (FPS) is a key enzyme in the isoprenoid biosynthesis pathway, which catalyzes the synthesis of farnesyl diphosphate (FPP). In this study, we cloned the FPS gene from P. grandiflorus (PgFPS) with an ORF of 1260 bp, encoding 419 amino acids with a deduced molecular weight and theoretical pI of 46,200.98 Da and 6.52, respectively. The squalene content of overexpressed PgFPS in tobacco leaves and yeast cells extract was 1.88-fold and 1.21-fold higher than that of the control group, respectively, and the total saponin content was also increased by 1.15 times in yeast cells extract, which verified the biological function of PgFPS in terpenoid synthesis. After 48 h of MeJA treatment and 6 h of ethephon treatment, the expression of the PgFPS gene in roots and stems reached its peak, showing a 3.125-fold and 3.236-fold increase compared to the untreated group, respectively. Interestingly, the expression of the PgFPS gene in leaves showed a decreasing trend after exogenous elicitors treatment. The discovery of this enzyme will provide a novel perspective for enhancing the efficient synthesis of platycodins.


Subject(s)
Cloning, Molecular , Geranyltranstransferase , Plant Proteins , Platycodon , Triterpenes , Platycodon/genetics , Platycodon/metabolism , Platycodon/chemistry , Platycodon/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Triterpenes/metabolism , Triterpenes/chemistry , Gene Expression Regulation, Plant , Amino Acid Sequence
4.
Heliyon ; 10(7): e28045, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590863

ABSTRACT

HD-Zip (Homeodomain-Leucine Zipper) is a family of transcription factors unique to higher plants and plays a vital role in plant growth and development. Increasing research results show that HD-Zip transcription factors are widely involved in many life processes in plants. However, the HD-Zip transcription factor for cannabis, a valuable crop, has not yet been identified. The sequence characteristics, chromosome localization, system evolution, conservative motif, gene structure, and gene expression of the HD-Zip transcription factor in the cannabis genome were systematically studied. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to verify its function. The results showed that cannabis contained 33 HD-Zip gene members. The number of amino acids is 136-849aa, the isoelectric point is 4.54-9.04, and the molecular weight is 23264.32-93147.87Da. Many cis-acting elements are corresponding to hormone and abiotic stress in the HD-Zip family promoter area of cannabis. Sequencing of the transcriptome at 5 tissue sites of hemp, stems, leaves, bracts, and seeds showed similar levels of expression of 33 members of the HD-Zip gene family at 5 tissue sites. Bioinformatics results show that HD-Zip expression is tissue-specific and may be influenced by hormones and environmental factors. This lays a foundation for further research on the gene function of HD-Zip.

5.
Biology (Basel) ; 13(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38666892

ABSTRACT

Astragalus mongholicus is a traditional Chinese medicine (TCM) with important medicinal value and is widely used worldwide. Heat shock (HSF) transcription factors are among the most important transcription factors in plants and are involved in the transcriptional regulation of various stress responses, including drought, salinity, oxidation, osmotic stress, and high light, thereby regulating growth and developmental processes. However, the HFS gene family has not yet been identified in A. mongholicus, and little is known regarding the role of HSF genes in A. mongholicus. This study is based on whole genome analysis of A. mongholicus, identifying a total of 22 AmHSF genes and analyzing their physicochemical properties. Divided into three subgroups based on phylogenetic and gene structural characteristics, including subgroup A (12), subgroup B (9), and subgroup C (1), they are randomly distributed in 8 out of 9 chromosomes of A. mongholicus. In addition, transcriptome data and quantitative real time polymerase chain reaction (qRT-PCR) analyses revealed that AmHSF was differentially transcribed in different tissues, suggesting that AmHSF gene functions may differ. Red and blue light treatment significantly affected the expression of 20 HSF genes in soilless cultivation of A. mongholicus seedlings. AmHSF3, AmHSF3, AmHSF11, AmHSF12, and AmHSF14 were upregulated after red light and blue light treatment, and these genes all had light-corresponding cis-elements, suggesting that AmHSF genes play an important role in the light response of A. mongholicus. Although the responses of soilless-cultivated A. mongholicus seedlings to red and blue light may not represent the mature stage, our results provide fundamental research for future elucidation of the regulatory mechanisms of HSF in the growth and development of A. mongholicus and its response to different light conditions.

6.
Physiol Mol Biol Plants ; 30(3): 401-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633270

ABSTRACT

The gene family known as the Lateral Organ Boundary Domain (LBD) is responsible for producing transcription factors unique to plants, which play a crucial role in controlling diverse biological activities, including their growth and development. This research focused on examining Cerasus humilis'ChLBD gene, owing to its significant ecological, economic, and nutritional benefits. Examining the ChLBD gene family's member count, physicochemical characteristics, phylogenetic evolution, gene configuration, and motif revealed 41 ChLBD gene family members spread across 8 chromosomes, with ChLBD gene's full-length coding sequences (CDSs) ranging from 327 to 1737 base pairs, and the protein sequence's length spanning 109 (ChLBD30)-579 (ChLBD35) amino acids. The molecular weights vary from 12.068 (ChLBD30) to 62.748 (ChLBD35) kDa, and the isoelectric points span from 4.74 (ChLBD20) to 9.19 (ChLBD3). Categorizing them into two evolutionary subfamilies: class I with 5 branches, class II with 2, the majority of genes with a single intron, and most members of the same subclade sharing comparable motif structures. The results of collinearity analysis showed that there were 3 pairs of tandem repeat genes and 12 pairs of fragment repeat genes in the Cerasus humilis genome, and in the interspecific collinearity analysis, the number of collinear gene pairs with apples belonging to the same family of Rosaceae was the highest. Examination of cis-acting elements revealed that methyl jasmonate response elements stood out as the most abundant, extensively dispersed in the promoter areas of class 1 and class 2 ChLBD. Genetic transcript analysis revealed that during Cerasus humilis' growth and maturation, ChLBD developed varied control mechanisms, with ChLBD27 and ChLBD40 potentially playing a role in managing color alterations in fruit ripening. In addition, the quality of calcium fruit will be affected by the environment during transportation and storage, and it is particularly important to use appropriate means to preserve the fruit. The research used salicylic acid-treated Cerasus humilis as the research object and employed qRT-PCR to examine the expression of six ChLBD genes throughout storage. Variations in the expression of the ChLBD gene were observed when exposed to salicylic acid, indicating that salicylic acid could influence ChLBD gene expression during the storage of fruits. This study's findings lay the groundwork for additional research into the biological role of the LBD gene in Cerasus humilis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01438-5.

7.
Heliyon ; 10(6): e27817, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545150

ABSTRACT

Terpene synthases (TPSs) regulate plant growth, development, and stress response. TPS genes have been identified in Arabidopsis thaliana and Zea mays. Cannabis sativa TPS genes were identified and analyzed using bioinformatics. Genomic data were downloaded from Plant Transcription Factor Database and National Center for Biotechnology Information database, and TPS genes were predicted, analyzed, and visualized using ExPASy, PlantCare, and other online websites along with TBtools, MEGA software, and other software. To verify its role, quantitative real-time polymerase chain reaction (qRT-PCR) tests were conducted. The Cannabis sativa TPS family comprises 41 elements distributed over 8 chromosomes and a single scaffold segment. The isoelectric point varied between 4.96 and 7.03, while the molecular weight spanned from 20705.90 to 102324.64 Da. The majority of genes were found in the cytoplasm and chloroplasts, with the remainder situated in the peroxisome, nucleus, plasma membrane, and mitochondria. Several cis-acting components associated with stress response were present in the gene's upstream promoter region. Data from RNA sequencing and qRT-PCR revealed specific expression of TPS genes in all five organs of female Cannabis sativa plants. Collinearity analysis showed 4 homologous gene pairs between the Cannabis sativa and Arabidopsis thaliana, with many pairs of homologous genes in other species, which was consistent with the dicotyledons evolutionary relationship. Furthermore, some genes may participate in Cannabis sativa growth and development and play a role in secondary metabolite synthesis. Therefore, bioinformatics analysis of the Cannabis sativa TPS gene family provides a theoretical basis for future research on the volatile terpene compounds of Cannabis sativa.

8.
Phytomedicine ; 127: 155483, 2024 May.
Article in English | MEDLINE | ID: mdl-38432036

ABSTRACT

BACKGROUND: Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE: MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS: Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS: Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.


Subject(s)
Drugs, Chinese Herbal , Glucosides , Paeonia , Glycosides/pharmacology , Paeonia/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Anti-Inflammatory Agents
9.
Molecules ; 29(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257334

ABSTRACT

Trollius chinensis Bunge, a perennial herb belonging to the Ranunculaceae family, has been extensively used in traditional Chinese medicine. Documented in the Supplements to the Compendium of Materia Medica, its medicinal properties encompass a spectrum of applications, including heat clearance, detoxification, alleviation of oral/throat sores, earaches, eye pain, cold-induced fever, and vision improvement. Furthermore, T. chinensis is used in clinical settings to treat upper respiratory infections, pharyngitis, tonsillitis, esoenteritis, canker, bronchitis, etc. It is mainly used to treat inflammation, such as inflammation of the upper respiratory tract and nasal mucosa. This comprehensive review explores the evolving scientific understanding of T. chinensis, covering facets of botany, materia medica, ethnopharmacological use, phytochemistry, pharmacology, and quality control. In particular, the chemical constituents and pharmacological research are reviewed. Polyphenols, mainly flavonoids and phenolic acids, are highly abundant among T. chinensis and are responsible for antiviral, antimicrobial, and antioxidant activities. The flower additionally harbors trace amounts of volatile oil, polysaccharides, and other bioactive compounds. The active ingredients of the flower have fewer side effects, and it is used in children because of its minimal side effects, which has great research potential. These findings validate the traditional uses of T. chinensis and lay the groundwork for further scientific exploration. The sources utilized in this study encompass Web of Science, Pubmed, CNKI site, classic monographs, Chinese Pharmacopoeia, Chinese Medicine Dictionary, and doctoral and master's theses.


Subject(s)
Botany , Materia Medica , Child , Humans , Ethnopharmacology , Quality Control , Inflammation
10.
Sensors (Basel) ; 23(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37430540

ABSTRACT

The rapid development of high-speed and heavy-haul railways caused rapid rail defects and sudden failure. This requires more advanced rail inspection, i.e., real-time accurate identification and evaluation for rail defects. However, existing applications cannot meet future demand. In this paper, different types of rail defects are introduced. Afterwards, methods that have the potential to achieve rapid accurate detection and evaluation of rail defects are summarized, including ultrasonic testing, electromagnetic testing, visual testing, and some integrated methods in the field. Finally, advice on rail inspection is given, such as synchronously utilizing the ultrasonic testing, magnetic flux leakage, and visual testing for multi-part detection. Specifically, synchronously using the magnetic flux leakage and visual testing technologies can detect and evaluate surface and subsurface defects, and UT is used to detect internal defects in the rail. This will obtain full rail information, to prevent sudden failure, then ensure train ride safety.

11.
Mitochondrial DNA B Resour ; 8(7): 787-790, 2023.
Article in English | MEDLINE | ID: mdl-37521904

ABSTRACT

Aegle marmelos (L.) Correa 1800, a plant belonging to the Rutaceae family, is extensively used in Tibetan medicine. We employed Illumina HiSeq reads to assemble the complete chloroplast (cp) genome of A. marmelos, which spans 144,538 bp. The genome comprises 114 genes, including 75 protein-coding genes, 31 tRNA genes, and 8 rRNA genes. It is characterized by four regions: The large single-copy (LSC) region (74,253 bp), the inverted repeat A (IRa) region (26,015 bp), the small single-copy (SSC) region (18,255 bp), and the inverted repeat B (IRb) region (26,015 bp). Phylogenomic analysis demonstrated a close relationship between A. marmelos and Citrus. The assembly of The cp genome in this study serves as a foundation for conservation efforts and phylogenetic investigations of A. marmelos, paving the way for future experimentation.

12.
Sensors (Basel) ; 23(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299966

ABSTRACT

Wheel burn can affect the wheel-rail contact state and ride quality. With long-term operation, it can cause rail head spalling or transverse cracking, which will lead to rail breakage. By analyzing the relevant literature on wheel burn, this paper reviews the characteristics, mechanism of formation, crack extension, and NDT methods of wheel burn. The results are as follows: Thermal-induced, plastic-deformation-induced, and thermomechanical-induced mechanisms have been proposed by researchers; among them, the thermomechanical-induced wheel burn mechanism is more probable and convincing. Initially, the wheel burns appear as an elliptical or strip-shaped white etching layer with or without deformation on the running surface of the rails. In the latter stages of development, this may cause cracks, spalling, etc. Magnetic Flux Leakage Testing, Magnetic Barkhausen Noise Testing, Eddy Current Testing, Acoustic Emission Testing, and Infrared Thermography Testing can identify the white etching layer, and surface and near-surface cracks. Automatic Visual Testing can detect the white etching layer, surface cracks, spalling, and indentation, but cannot detect the depth of rail defects. Axle Box Acceleration Measurement can be used to detect severe wheel burn with deformation.


Subject(s)
Burns , Humans , Burns/diagnosis , Acceleration , Acoustics , Plastics , Probability
13.
Front Plant Sci ; 14: 1152685, 2023.
Article in English | MEDLINE | ID: mdl-37077646

ABSTRACT

Introduction: Dof genes encode plant-specific transcription factors, which regulate various biological processes such as growth, development, and secondary metabolite accumulation. Methods: We conducted whole-genome analysis of Chinese dwarf cherry (Cerasus humilis) to identify ChDof genes and characterize the structure, motif composition, cis-acting elements, chromosomal distribution, and collinearity of these genes as well as the physical and chemical properties, amino acid sequences, and phylogenetic evolution of the encoded proteins. Results: The results revealed the presence of 25 ChDof genes in C. humilis genome. All 25 ChDof genes could be divided into eight groups, and the members of the same group had similar motif arrangement and intron-exon structure. Promoter analysis showed that cis-acting elements responsive to abscisic acid, low temperature stress, and light were dominant. Transcriptome data revealed that most ChDof genes exhibited tissue-specific expression. Then, we performed by qRT-PCR to analyze the expression patterns of all 25 ChDof genes in fruit during storage. The results indicated that these genes exhibited different expression patterns, suggesting that they played an important role in fruit storage. Discussion: The results of this study provide a basis for further investigation of the biological function of Dof genes in C. humilis fruit.

14.
Int J Biol Macromol ; 240: 124436, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37068542

ABSTRACT

NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are a class of TFs families unique to plants, which not only play an important role in the growth and developmental stages of plants but also function in response to stress and regulation of secondary metabolite biosynthesis. However, there are few studies on NAC genes in the medicinal plant Isatis indigotica. In this study, 96 IiNAC genes were identified based on the whole-genome data of I. indigotica, distributed in seven chromosomes and three contigs. IiNAC genes were structurally conserved and divided into 15 subgroups. Cis-elements were identified in the promoter region of the IiNAC gene in response to plant growth and development, abiotic stresses and hormones. In addition, transcriptome and metabolome data of I. indigotica leaves under salt stress were analyzed to construct a network of IiNAC gene co-expression and metabolite association. Ten differentially expressed IiNAC genes were co-expressed with 109 TFs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that most of these genes were associated with plant growth and development and abiotic stress responses. Eleven IiNAC genes were positively associated with 72 metabolites. Eleven IiNAC genes were positively or negatively associated with 47 metabolites through 37 TFs. Commonly associated secondary metabolites include two terpenoids, abscisic acid and bilobalide, two flavonoids, dihydrokaempferol and syringaldehyde, a coumarin, 7-methoxycoumarin, an alkaloid, lupinine, and quinone dihydrotanshinone I. This study provides important data to support the identification of the NAC gene family in I. indigotica and the regulatory functions of IiNAC genes in metabolites under salt stress.


Subject(s)
Isatis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Isatis/genetics , Isatis/metabolism , Transcriptome , Genes, Plant , Salt Stress/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Front Chem ; 11: 1158727, 2023.
Article in English | MEDLINE | ID: mdl-36970400

ABSTRACT

Intersubgeneric hybrids of Paeonia lactiflora (Paeonia lactiflora pall., P. lactiflora.) cover a huge variety of systems in the genus Paeonia. In recent years, many studies have confirmed that the intersubgeneric hybrids of P. lactiflora. are rich in paeoniflorin and other medicinal ingredients, however, it has always proved difficult to clarify the medicinal value of the hybrids and whether they can be used for medicinal purposes. In this study, the consistency of the plant population was evaluated through DUS evaluation, in order to clarify whether the selected research materials had stability and consistency within the population and specificity between populations. The differences between the paeoniflorin contents in the roots of the nine intersubgeneric hybrids of the P. lactiflora. varieties and two medicinal varieties were critically compared. The differences in the chemical components of the roots of nine intersubgeneric hybrids of P. lactiflora. and reference medicine substances of P. lactiflora. and Paeonia anomala subsp. veitchii (Lynch) D. Y. Hong and K. Y. Pan (Paeonia veitchii Lynch., P. veitchii.) were explored via stoichiometric and chemical fingerprint high performance liquid chromatography analyses. The results showed that there were significant differences in the chemical compositions between the intersubgeneric hybrids of P. lactiflora. and the medicinal reference materials, and the contents of paeoniflorin were elevated such that the hybrids could be used as the raw material for extraction of paeoniflorin, thus providing an opportunity to explore the medicinal value of the hybrids. This study explored the key differential components among the varieties and provides a reference and basis for the study of the medicinal value and the identification of the intersubgeneric hybrids of the P. lactiflora. varieties.

16.
Gene ; 869: 147398, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36990256

ABSTRACT

The trihelix gene family plays an important role in plant growth and abiotic stress responses. Through the analysis of genomic and transcriptome data, 35 trihelix family members were identified for the first time in Platycodon grandiflorus; they were classified into five subfamilies: GT-1, GT-2, SH4, GTγ, and SIP1. The gene structure, conserved motifs and evolutionary relationships were analyzed. Prediction of physicochemical properties of the 35 trihelix proteins founded, the number of amino acid molecules is between 93 and 960, theoretical isoelectric point is between 4.24 and 9.94, molecular weight is between 9829.77 and 107435.38, 4 proteins among them were stable, and all GRAVY is negative. The full-length cDNA sequence of the PgGT1 gene of the GT-1 subfamily was cloned by PCR. It is a 1165 bp ORF encoding a 387 amino acid protein, with a molecular weight of 43.54 kDa. The predicted subcellular localization of the protein in the nucleus was experimentally verified. After being treated with NaCl, PEG6000, MeJA, ABA, IAA, SA, and ethephon, the expression of PgGT1 gene showed an up-regulated trend except for the roots treated with NaCl and ABA. This study laid a bioinformatics foundation for the research of trihelix gene family and the cultivation of excellent germplasm of P. grandiflorus.


Subject(s)
Platycodon , Platycodon/genetics , Platycodon/metabolism , Plant Proteins/metabolism , Sodium Chloride/metabolism , Gene Expression Profiling , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Phylogeny
17.
Plant Signal Behav ; 18(1): 2163069, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-36681901

ABSTRACT

Platycodon grandiflorus set ornamental, edible, and medicinal plant with broad prospects for further application development. However, there are no reports on the YABBY transcription factor in P. grandiflorus. Identification and analysis of the YABBY gene family of P. grandiflorus using bioinformatics means. Six YABBY genes were identified and divided into five subgroups. Transcriptome data and qRT-PCR were used to analyze the expression patterns of YABBY. YABBY genes exhibited organ-specific patterns in expression in P grandiflorus. Upon salt stress and drought induction, P. grandiflorus presented different morphological and physiological changes with some dynamic changes. Under salt treatment, the YABBY gene family was down-regulated; PgYABBY5 was up-regulated in leaves at 24 h. In drought treatment, PgYABBY1, PgYABBY2, and PgYABBY3 were down-regulated to varying degrees, but PgYABBY3 was significantly up-regulated in the roots. PgYABBY5 was up-regulated gradually after being down-regulated. PgYABBY5 was significantly up-regulated in stem and leaf at 48 h. PgYABBY6 was down-regulated at first and then significantly up-regulated. The dynamic changes of salt stress and drought stress can be regarded as the responses of plants to resist damage. During the whole process of salt and drought stress treatment, the protein content of each tissue part of P grandiflorus changed continuously. At the same time, we found that the promoter region of the PgYABBY gene contains stress-resistant elements, and the regulatory role of YABBY transcription factor in the anti-stress mechanism of P grandiflorus remains to be studied. PgYABBY1, PgYABBY2, and PgYABBY5 may be involved in the regulation of saponins in P. grandiflorus. PgYABBY5 may be involved in the drought resistance mechanism in P. grandiflorus stems and leaves. This study may provide a theoretical basis for studying the regulation of terpenoids by the YABBY transcription factor and its resistance to abiotic stress.


Subject(s)
Plants, Medicinal , Platycodon , Platycodon/genetics , Platycodon/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics
18.
Mol Biol Rep ; 50(1): 245-253, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36329337

ABSTRACT

Apiaceae plants are used as medicinal herbs, pesticides, spices, and vegetables; thus, accurately identifying Apiaceae species is important. The grassland ecosystem of Heilongjiang Province in northern China has huge reserves of wild Apiaceae plants, but few reports have systematically documented their diversity. In this study, 275 Apiaceae plants of 23 species in 18 genera were collected from this area. We identified Apiaceae species by using nuclear internal transcribed spacer (ITS/ITS2) and psbA-trnH (chloroplast non-coding region) sequences based on experimental data. The identification efficiency of ITS, ITS2 and psbA-trnH sequences was determined and evaluated by sequence alignment and analysis, intraspecific and interspecific genetic distance analyses, and phylogenetic tree construction. ITS, ITS2 could distinguish 21 species from 17 genera of Apiaceae with good identification effect. When identifying species in the Apiaceae family, ITS2 can be used as the core barcode and psbA-trnH can be used as the supplementary barcode. These results can enrich the reference Apiaceae DNA barcode database.


Subject(s)
Apiaceae , Plants, Medicinal , DNA Barcoding, Taxonomic/methods , Apiaceae/genetics , Phylogeny , Ecosystem , DNA, Plant/genetics , Plants, Medicinal/genetics
19.
Article in English | MEDLINE | ID: mdl-36516081

ABSTRACT

Introduction: The B3 transcription factor has been identified in Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum, among other species. This family of transcription factors regulates seed growth, development, and stress. Cannabis is a valuable crop with numerous applications; however, no B3 transcription factors have been identified in this plant. Materials and Methods: The cannabis B3 gene family was identified and analyzed using bioinformatics analysis tools, such as the NCBI database, plantTFDB website, TBtools, and MEGA software. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were used to confirm its function. Results: The cannabis B3 family contains 65 members spread across 10 chromosomes. The isoelectric point ranged from 10.03 to 4.65, and the molecular weight ranged from 99,542.88 to 14,310.9 Da. Most of the members were found in the nucleus. The upstream promoter region of the gene contains a variety of cis-acting elements related to the stress response. RNA-seq data and qRT-PCR results showed that CsB3 genes were expressed differently in five organs of female Diku plants and in glandular hairs of nine distinct types of female cannabis inflorescences. Collinearity analysis revealed that there were more homologous genes between cannabis and dicotyledons than monocotyledonous plants, which was consistent with the evolutionary relationship. Conclusions: Hormones and external environmental factors might influence CsB3 expression. Furthermore, some genes such as CsB3-02, CsB3-07, CsB3-50, CsB3-62, and CsB3-65 may participate in cannabis growth and development and play a role in secondary metabolite synthesis. This study provides a solid foundation for further research into the gene function of the cannabis B3 family.

20.
PLoS One ; 17(12): e0277233, 2022.
Article in English | MEDLINE | ID: mdl-36454898

ABSTRACT

Bioactive compounds are major reasons for the value of Eleutherococcus senticosus, which can be modified by different lighting spectra. Light-emitting diode (LED) provides lights with specific spectra which can interact with other treatments to impact plant bioactive production. Chitosan nanoparticle (CN) is a biopolymer derived from marine creatures. It's usage may be a practical approach to cope with uncertainties in secondary metabolites induced by illumination. Carbon (C) and nitrogen (N) cyclings link plant eco-physiological performance and bioactive substance; hence their associations may reveal the mechanism of joint light-CN interaction. In this study, E. senticosus seedlings were raised under artificial lighting spectra from high-pressure sodium (HPS) lamps (44% red, 55% green, 1% blue) and white (44% red, 47% green, 8% blue) and red colored (73% red, 13% green, 14% blue) LED panels. Half of the seedlings received CN and the other half received distilled water as the control. Compared to the HPS spectrum, the red-light induced stronger shoot growth with greater biomass accumulation and higher water uptake but resulted in lower N concentration and biomass ratio in the root. The white light caused more biomass allocated to the root and strengthened stem C concentration. Stem eleutheroside B increased with shoot growth, while root eleutheroside B had a positive association with leaf C and stem protocatechuic acid had a negative association with leaf N. Having the CN treatment in white and red LED lights is recommended for increasing accumulation of bioactive compounds in the shoots and roots of E. senticosus seedlings, respectively.


Subject(s)
Chitosan , Eleutherococcus , Nanoparticles , Chitosan/pharmacology , Seedlings , Water , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...