Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Neonatal Screen ; 10(2)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38651393

ABSTRACT

The aim of this study was to observe the outcomes of newborn screening (NBS) in a certain population by using next-generation sequencing (NGS) as a first-tier screening test combined with tandem mass spectrometry (MS/MS). We performed a multicenter study of 29,601 newborns from eight screening centers with NBS via NGS combined with MS/MS. A custom-designed panel targeting the coding region of the 142 genes of 128 inborn errors of metabolism (IEMs) was applied as a first-tier screening test, and expanded NBS using MS/MS was executed simultaneously. In total, 52 genes associated with the 38 IEMs screened by MS/MS were analyzed. The NBS performance of these two methods was analyzed and compared respectively. A total of 23 IEMs were diagnosed via NGS combined with MS/MS. The incidence of IEMs was approximately 1 in 1287. Within separate statistical analyses, the positive predictive value (PPV) for MS/MS was 5.29%, and the sensitivity was 91.3%. However, for genetic screening alone, the PPV for NGS was 70.83%, with 73.91% sensitivity. The three most common IEMs were methylmalonic academia (MMA), primary carnitine deficiency (PCD) and phenylketonuria (PKU). The five genes with the most common carrier frequencies were PAH (1:42), PRODH (1:51), MMACHC (1:52), SLC25A13 (1:55) and SLC22A5 (1:63). Our study showed that NBS combined with NGS and MS/MS improves the performance of screening methods, optimizes the process, and provides accurate diagnoses.

2.
Dalton Trans ; 53(8): 3579-3588, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38314620

ABSTRACT

Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Boron Compounds/pharmacology , Superoxides
3.
Chemistry ; 30(16): e202303766, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38233363

ABSTRACT

Intracellular Staphylococcus aureus (S. aureus), especially the methicillin resistant staphylococcus aureus (MRSA), are difficult to detect and eradicate due to the protection by the host cells. Antibacterial photodynamic therapy (aPDT) offers promise in treating intracellular bacteria, provided that selective damage to the bacteria ranther than host cells can be realized. According to the different nitroreductase (NTR) levels in mammalian cells and S. aureus, herein NTR-responsive photosensitizers (PSs) (T)CyI-NO2 were designed and synthesized. The emission and 1O2 generation of (T)CyI-NO2 are quenched by the 4-nitrobenzyl group, but can be specifically switched on by bacterial NTR. Therefore, selective imaging and photo-inactivation of intracellular S. aureus and MRSA were achieved. Our findings may pave the way for the development of more efficient and selective aPDT agents to combat intractable intracellular infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Staphylococcus aureus , Nitrogen Dioxide , Photochemotherapy/methods , Anti-Bacterial Agents/pharmacology , Mammals
4.
JAMA Netw Open ; 6(9): e2331162, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37656460

ABSTRACT

Importance: Newborn screening via biochemical tests is in use worldwide. The availability of genetic sequencing has allowed rapid screening for a substantial number of monogenic disorders. However, the outcomes of this strategy have not been evaluated in a general newborn population. Objective: To evaluate the outcomes of applying gene panel sequencing as a first-tier newborn screening test. Design, Setting, and Participants: This cohort study included newborns who were prospectively recruited from 8 screening centers in China between February 21 and December 31, 2021. Neonates with positive results were followed up before July 5, 2022. Exposures: All participants were concurrently screened using dried blood spots. The screen consisted of biochemical screening tests and a targeted gene panel sequencing test for 128 conditions. The biochemical and genomic tests could both detect 43 of the conditions, whereas the other 85 conditions were screened solely by the gene panel. Main Outcomes and Measures: The primary outcomes were the number of patients detected by gene panel sequencing but undetected by the biochemical test. Results: This study prospectively recruited 29 601 newborns (15 357 [51.2%] male). The mean (SD) gestational age was 39.0 (1.5) weeks, and the mean (SD) birth weight was 3273 (457) g. The gene panel sequencing screened 813 infants (2.7%; 95% CI, 2.6%-2.9%) as positive. By the date of follow-up, 402 infants (1.4%; 95% CI, 1.2%-1.5%) had been diagnosed, indicating the positive predictive value was 50.4% (95% CI, 50.0%-53.9%). The gene panel sequencing identified 59 patients undetected by biochemical tests, including 20 patients affected by biochemically and genetically screened disorders and 39 patients affected by solely genetically screened disorders, which translates into 1 out of every 500 newborns (95% CI, 1/385-1/625) benefiting from the implementation of gene panels as a first-tier screening test. Conclusions and Relevance: In this cohort study, the use of gene panel sequencing in a general newborn population as a first-tier screening test improved the detection capability of traditional screening, providing an evidence-based suggestion that it could be considered as a crucial method for first-tier screening.


Subject(s)
Genomics , Neonatal Screening , Infant, Newborn , Infant , Humans , Male , Female , Cohort Studies , Birth Weight , China
5.
J Agric Food Chem ; 71(22): 8367-8380, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37218180

ABSTRACT

Thionins are important antibacterial peptides in plants. However, the roles of plant thionins, especially the defensin-dissimilar thionins, in alleviating heavy-metal toxicity and accumulation remain unclear. Here, cadmium (Cd)-related functions and mechanisms of the defensin-dissimilar rice thionin OsThi9 were investigated. OsThi9 was significantly upregulated in response to Cd exposure. OsThi9 was localized to the cell wall and was shown to bind Cd; these characters help to increase Cd tolerance. In Cd-exposed rice plants, OsThi9 overexpression significantly increased cell wall Cd binding, decreasing upward Cd translocation and subsequent Cd accumulation in shoots and straw, while OsThi9 knockout had inverse effects. Importantly, in rice plants grown in Cd-contaminated soils, OsThi9 overexpression significantly reduced Cd accumulation in brown rice (decrease of ≥ 51.8%) without negatively impairing the crop yield and essential elements. Thus, OsThi9 plays an important role in the alleviation of Cd toxicity and accumulation and has significant potential for developing low-Cd rice.


Subject(s)
Oryza , Soil Pollutants , Thionins , Cadmium/metabolism , Thionins/metabolism , Oryza/genetics , Oryza/metabolism , Soil Pollutants/metabolism , Defensins/genetics , Defensins/metabolism , Soil
6.
J Environ Sci (China) ; 126: 138-152, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36503743

ABSTRACT

The OsLCD gene, which has been implicated in cadmium (Cd) accumulation in rice, might be a useful target for CRISPR/Cas9 editing. However, the effects of OsLCD gene editing on Cd accumulation, plant growth, and yield traits remain unknown. Here, we used CRISPR/Cas9 to generate oslcd single mutants from indica and japonica rice cultivars. We also generated osnramp5 single mutants and oslcd osnramp5 double mutants in the indica background. When grown in Cd-contaminated paddy soils, all oslcd single mutants accumulated less Cd than the wild types (WTs). Consistent with this, oslcd single mutants grown in Cd-contaminated hydroponic culture accumulated significantly less Cd in the shoots as compared to WTs. This decrease in accumulation probably resulted from the reduction of Cd translocation under Cd stress. Oxidative damage also decreased, and plant growth increased in all oslcd single mutant seedlings as compared to WTs in the presence of Cd. Plant growth and most yield traits, as well essential element concentrations in rice seedling shoots, brown rice, and rice straw, were similar between oslcd single mutants and WTs. In the presence of Cd, Cd concentrations in the brown rice and shoots of oslcd osnramp5 double mutants were significantly decreased compared with WTs as well as osnramp single mutants. Our results suggested that OsLCD knockout may reduce Cd accumulation alone or in combination with other knockout mutations in a variety of rice genotypes; unlike OsNramp5 mutations, OsLCD knockout did not reduce essential element contents. Therefore, OsLCD knockout might be used to generate low-Cd rice germplasms.


Subject(s)
Cadmium , Oryza , Cadmium/toxicity , Oryza/genetics , CRISPR-Cas Systems , Seedlings , Hydroponics
7.
J Environ Sci (China) ; 115: 294-307, 2022 May.
Article in English | MEDLINE | ID: mdl-34969457

ABSTRACT

Silicon (Si) has been shown to alleviate Cd stress in rice. Here, we investigated the beneficial effects of foliar Si in an indica rice Huanghuazhan (HHZ). Our results showed that foliar Si increases the dry weight and decreases Cd translocation in Cd-exposed rice at the grain-filling stage only, implying that the filling stage is critical for foliar Si to reduce Cd accumulation. We also investigated the transcriptomics in flag leaves (FLs), spikelets (SPs), and node Is (NIs) of Cd-exposed HHZ after foliar Si application at the filling stage. Importantly, the gene expression profiles associated with the Si-mediated alleviation of Cd stress were tissue specific, while shared pathways were mediated by Si in Cd-exposed rice tissues. Furthermore, after the Si treatment of Cd-exposed rice, the ATP-binding cassette (ABC)-transporters were mostly upregulated in FL and SP, while the bivalent cation transporters were mostly downregulated in FL and NI, possibly helping to reduce Cd accumulation. The genes associated with essential nutrient transporters, carbohydrate and secondary metabolite biosynthesis, and cytochrome oxidase activity were mostly upregulated in Cd-exposed FL and SP, which may help to alleviate oxidative stress and improve plant growth under Cd exposure. Interestingly, genes responsible for signal transduction were negatively regulated in FL, but positively regulated in SP, by foliar Si. Our results provide transcriptomic evidence that foliar Si plays an active role in alleviating the effects of Cd exposure in rice. In particular, foliar Si may alter the expression pattern of genes associated with transport, biosynthesis and metabolism, and oxidation reduction.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Cadmium/toxicity , Oryza/genetics , Silicon , Soil Pollutants/analysis , Transcriptome
8.
J Environ Sci (China) ; 109: 88-101, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34607677

ABSTRACT

The inessential heavy metal/loids cadmium (Cd) and arsenic (As), which often co-occur in polluted paddy soils, are toxic to rice. Silicon (Si) treatment is known to reduce Cd and As toxicity in rice plants. To better understand the shared mechanisms by which Si alleviates Cd and As stress, rice seedlings were hydroponically exposed to Cd or As, then treated with Si. The addition of Si significantly ameliorated the inhibitory effects of Cd and As on rice seedling growth. Si supplementation decreased Cd and As translocation from roots to shoots, and significantly reduced Cd- and As-induced reactive oxygen species generation in rice seedlings. Transcriptomics analyses were conducted to elucidate molecular mechanisms underlying the Si-mediated response to Cd or As stress in rice. The expression patterns of the differentially expressed genes in Cd- or As-stressed rice roots with and without Si application were compared. The transcriptomes of the Cd- and As-stressed rice roots were similarly and profoundly reshaped by Si application, suggesting that Si may play a fundamental, active role in plant defense against heavy metal/loid stresses by modulating whole genome expression. We also identified two novel genes, Os01g0524500 and Os06g0514800, encoding a myeloblastosis (MYB) transcription factor and a thionin, respectively, which may be candidate targets for Si to alleviate Cd and As stress in rice, as well as for the generation of Cd- and/or As-resistant plants. This study provides valuable resources for further clarification of the shared molecular mechanisms underlying the Si-mediated alleviation of Cd and As toxicity in rice.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/toxicity , Cadmium/toxicity , Oryza/genetics , Plant Roots , Seedlings/genetics , Silicon/toxicity , Soil Pollutants/toxicity , Transcriptome
9.
Scand J Clin Lab Invest ; 80(8): 619-622, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33161754

ABSTRACT

OBJECTIVE: To investigate the incidence of phenylalanine hydroxylase (PAH) deficiency and PAH genotypes in neonates in Hainan, China. Methods: We performed heal stick to collect blood and obtain dry blood spot specimens from newborns in Hainan from January 2007 to December 2016. Phenylalanine (Phe) concentration in these dry blood spots was measured by the fluorescence method to screen phenylketonuria (PKU). For suspicious samples, the genotypes of the PAH gene were amplified by biotin labeled oligonucleotide primers. Polymerase chain reaction (PCR) products were then analyzed by flow-through hybridization to detect genotypes. At the same time, peripheral blood samples of children suspicious of PKU and their parents were used to perform gene sequencing. Results: Of the 914,520 newborns screened, 29 of them had PAH deficiency. The incidence of PAH deficiency in Hainan was 3.17/100,000. A total of 58 mutant alleles belonging to 15 different types were identified in the 29 patients. In terms of genotypes frequency, the top 4 were: c.611A > G 20.7% (12/58) , c.728G > A 17.2%, c.158G > A 15.2% (9/58) and c.721C > T 13.8% (8/58). The frequencies of other genotypes were all below 10%. Conclusion: The incidence of PAH deficiency in Hainan is relatively high among all provinces in southern China. With a total frequency of 67.2%, c.611A > G, c.728G > A, c.158G > A and c.721C > T, and are the most common PAH gene genotypes.


Subject(s)
Genotype , Phenylalanine Hydroxylase/genetics , Phenylketonurias/epidemiology , Phenylketonurias/genetics , Polymorphism, Genetic , Alleles , China/epidemiology , Dried Blood Spot Testing , Female , Gene Expression , Gene Frequency , Humans , Incidence , Infant, Newborn , Male , Phenylalanine/blood , Phenylalanine Hydroxylase/deficiency , Phenylketonurias/blood , Phenylketonurias/diagnosis , Sequence Analysis, DNA
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 25(5): 726-9, 2005 May.
Article in Chinese | MEDLINE | ID: mdl-16128074

ABSTRACT

The structure and properties of Ag self-assembly films have attracted much attention in the past decade, which are to a large extent influenced by the structure and properties of the nanoparticles. In the present work, the single-layer and multi-layer complex films of silver nanoparticles and their absorbates were fabricated by using self-assembly technique. The interaction of silver nanoparticle and its absorbate was studied using absorption spectroscopy and surface enhanced Raman scattering spectroscopy.The Raman enhanced properties of silver nanoparticles, and the structure and properties of the complex films were also investigated. The experimental results indicate that the interaction of octodecyl amic (OA) and silver nanoparticle takes place via the NH2 substitute and the active site on Ag, and there might exist photocatalysis under the laser excitation. In addition, the product from otcodecyl amic and stearic acid(SA) has a weak interaction with silver nanoparticle, which mainly takes place as spatial encumbrance in the self-assembly complex film.


Subject(s)
Metal Nanoparticles/chemistry , Silver Compounds/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Benzene Derivatives/chemistry , Membranes, Artificial , Polymers/chemistry , Silver Nitrate/chemistry , Stearic Acids/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...