Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 248: 115995, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38176255

ABSTRACT

To measure toxins using immunoassays, hazardous toxin standards need to be added for quantification. To solve this problem, we propose to use aptamers as competitors to replace toxin standards. In this work, aptamers specific for ochratoxin A (OTA) nanobodies were selected using a DNA library containing a 36 nucleotide random region. The obtained sequences were highly aligned and the best competitor was identified to be a sequence named apt2-OT based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). The Kd of apt2-OT was measured to be 2.86 µM using local surface plasmon resonance spectroscopy. The optimal apt2-OT was identified to substitute the OTA standard with a concentration needed for 50% inhibition of binding (IC50) of 3.26 µM based on a nontoxic direct competitive ELISA. The equivalence relationship between the aptamer and OTA was established in a flour sample, and a recovery experiment was performed. The detection limit for this method was 0.23 ng/mL, with a linear range from 0.25 to 10.50 ng/mL. The recovery rate was 97.5%-115.5%. This study provides a low-cost, rapid and environmentally friendly alternative to the development of immunoassays for toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Ochratoxins , Single-Domain Antibodies , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Ochratoxins/toxicity , Ochratoxins/analysis , Immunoassay , Limit of Detection
2.
World J Clin Cases ; 11(27): 6624-6630, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37900228

ABSTRACT

BACKGROUND: Posterior interosseous nerve (PIN) entrapment syndrome is one of the causes of weakness and pain of the arm muscles, which is prone to missed diagnosis and misdiagnosis in clinic practice. This paper reports a case of PIN entrapment syndrome, with PIN injury indicated by electrophysiology. Musculoskeletal ultrasound was applied to identify that the entrapment point was located at the inlet of the Frohse arch and the outlet of the supinator muscle. Treatment with ultrasound-guided nerve hydrodissection was performed on the entrapment point, which significantly improved the symptoms. Ultrasound-guided nerve hydrodissection is an effective therapeutic method for PIN entrapment syndrome. CASE SUMMARY: A male patient, 35 years old, worked as an automobile mechanic. He felt slightly weak extension activity of his right fingers 2 years ago but sought no treatment. Later, the symptoms gradually became aggravated and led to finger drop, particularly severe in the right middle finger, accompanied by supination weakness of the right forearm. Neural electrophysiological examination showed that the patient had partial PIN injury of the right radius. Musculoskeletal ultrasound examination indicated PIN entrapment at the inlet of the Frohse arch and the outlet of the supinator muscle. Therefore, PIN entrapment syndrome was diagnosed. After treatment with ultrasound-guided nerve hydrodissection around the entrapment point, the dorsiflexion weakness of the right hand was significantly improved compared with before treatment. CONCLUSION: Ultrasound-guided hydrodissection is efficacious for PIN entrapment syndrome, with high clinical value and great application prospects.

3.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688005

ABSTRACT

Road parameter identification is of great significance for the active safety control of tracked vehicles and the improvement of vehicle driving safety. In this study, a method for establishing a prediction model of the engine output torques in tracked vehicles based on vehicle driving data was proposed, and the road rolling resistance coefficient f was further estimated using the model. First, the driving data from the tracked vehicle were collected and then screened by setting the driving conditions of the tracked vehicle. Then, the mapping relationship between the engine torque Te, the engine speed ne, and the accelerator pedal position ß was obtained by a genetic algorithm-backpropagation (GA-BP) neural network algorithm, and an engine output torque prediction model was established. Finally, based on the vehicle longitudinal dynamics model, the recursive least squares (RLS) algorithm was used to estimate the f. The experimental results showed that when the driving state of the tracked vehicle satisfied the set driving conditions, the engine output torque prediction model could predict the engine output torque T^e in real time based on the changes in the ne and ß, and then the RLS algorithm was used to estimate the road rolling resistance coefficient f^. The average coefficient of determination R of the T^e was 0.91, and the estimation accuracy of the f^ was 98.421%. This method could adequately meet the requirements for engine output torque prediction and real-time estimation of the road rolling resistance coefficient during tracked vehicle driving.

4.
Compr Rev Food Sci Food Saf ; 22(5): 3481-3505, 2023 09.
Article in English | MEDLINE | ID: mdl-37458294

ABSTRACT

Food safety has long been an area of concern. The selection of stable and efficient model organisms is particularly important for food toxicology studies. Zebrafish (Danio rerio) are small model vertebrates, and 70% of human genes have at least one zebrafish ortholog. Zebrafish have advantages as model organisms due to their short life cycle, strong reproductive ability, easy rearing, and low cost. Zebrafish embryos have the advantage of being sensitive to the breeding environment and thus have been used as biosensors. Zebrafish and their embryos have been widely used for food toxicology assessments. This review provides a systematic and comprehensive summary of food toxicology studies using zebrafish as model organisms. First, we briefly introduce the multidimensional mechanisms and structure-activity relationship studies of food toxicological assessment. Second, we categorize these studies according to eight types of hazards in foods, including mycotoxins, pesticides, antibiotics, heavy metals, endocrine disruptors, food additives, nanoparticles, and other food-related ingredients. Finally, we list the applications of zebrafish in food toxicology studies in line with future research prospects, aiming to provide a valuable reference for researchers in the field of food science.


Subject(s)
Food , Zebrafish , Animals , Humans , Zebrafish/genetics , Food Technology
5.
Biosensors (Basel) ; 13(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37232925

ABSTRACT

A capture systematic evolution of ligands by exponential enrichment (Capture-SELEX) was described to discover novel aptamers specific for 5-hydroxymethylfurfural (5-HMF), and a biosensor based on molecular beacon was constructed to detect 5-HMF. The ssDNA library was immobilized to streptavidin (SA) resin to select the specific aptamer. The selection progress was monitored using real-time quantitative PCR (Q-PCR), and the enriched library was sequenced by high-throughput sequencing (HTS). Candidate and mutant aptamers were selected and identified by Isothermal Titration Calorimetry (ITC). The FAM-aptamer and BHQ1-cDNA were designed as the quenching biosensor to detect 5-HMF in milk matrix. After the 18th round selection, the Ct value decreased from 9.09 to 8.79, indicating that the library was enriched. The HTS results indicated that the total sequence numbers for 9th, 13th, 16th, and 18th were 417054, 407987, 307666, and 259867, but the number of sequences for the top 300 sequences was gradually increased from 9th to 18th, and the ClustalX2 analysis showed that there were four families with high homology rate. ITC results indicated that the Kd values of H1 and its mutants H1-8, H1-12, H1-14, and H1-21 were 2.5 µM, 1.8 µM, 1.2 µM, 6.5 µM, and 4.7 µM. The linear range of the quenching biosensor was from 0 µM to 75 µM, and it had a similar linear range in the 0.1% milk matrix. This is the first report to select a novel aptamer specific for 5-HMF and develop quenching biosensor for the rapid detection of 5-HMF in milk matrix.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Humans , Aptamers, Nucleotide/chemistry , DNA, Single-Stranded , Furaldehyde
6.
Eur J Pharmacol ; 946: 175642, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36871664

ABSTRACT

Cognitive impairment has become a major public health problem. Growing evidence suggests that high-fat diet (HFD) can cause cognitive dysfunction and increase the risk of dementia. However, effective treatment for cognitive impairment is not available. Ferulic acid (FA) is a single phenolic compound with anti-inflammatory and antioxidant properties. Nevertheless, its role in regulating learning and memory in HFD-fed mice and the underlying mechanism remains unclear. In this study, we aimed to identify the neuroprotective mechanisms of FA in HFD induced cognitive impairment. We found that FA improved the survival rate of HT22 cells treated with palmitic acid (PA), inhibited cell apoptosis, and reduced oxidative stress via the IRS1/PI3K/AKT/GSK3ß signaling pathway; Furthermore, FA treatment for 24 weeks improved the learning and memory of HFD-fed mice and decreased hyperlipidemia. Moreover, the expression of Nrf2 and Gpx4 proteins were decreased in HFD-fed mice. After FA treatment, the decline of these proteins was reversed. Our study showed that the neuroprotective effect of FA on cognitive impairment was related to the inhibition of oxidative stress and apoptosis and regulation of glucose and lipid metabolism. These findings suggested that FA can be developed as a potential agent for the treatment of HFD-induced cognitive impairment.


Subject(s)
Cognitive Dysfunction , Diet, High-Fat , Mice , Animals , Diet, High-Fat/adverse effects , Phosphatidylinositol 3-Kinases , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Oxidative Stress , Apoptosis , Mice, Inbred C57BL
7.
Article in English | MEDLINE | ID: mdl-36900939

ABSTRACT

The aim of this study was to explore the underlying mechanism of adverse effects caused by tebuconazole (TEB) on the reproduction of aquatic organisms In the present study, in order to explore the effects of TEB on reproduction, four-month-old zebrafish were exposed to TEB (0, DMSO, 0.4 mg/L, 0.8 mg/L, and 1.6 mg/L) for 21 days. After exposure, the accumulations of TEB in gonads were observed and the cumulative egg production was evidently decreased. The decline of fertilization rate in F1 embryos was also observed. Then the changes in sperm motility and histomorphology of gonads were discovered, evaluating that TEB had adverse effects on gonadal development. Additionally, we also found the alternations of social behavior, 17ß-estradiol (E2) level, and testosterone (T) level. Furthermore, the expression levels of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis and social behavior were remarkably altered. Taken together, it could be concluded that TEB affected the egg production and fertilization rate by interfering with gonadal development, sex hormone secretion, and social behavior, which were eventually attributed to the disruption of the expressions of genes associated with the HPG axis and social behavior. This study provides a new perspective to understanding the mechanism of TEB-induced reproductive toxicity.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Male , Zebrafish/metabolism , Sperm Motility , Gonads/metabolism , Reproduction , Social Behavior , Water Pollutants, Chemical/toxicity , Endocrine Disruptors/toxicity
8.
Foods ; 11(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35742011

ABSTRACT

5-Hydroxymethylfurfural (5-HMF) and furfural (FF) are products of the maillard reaction (MR) in milk powder and their safety is controversial. The concentration changes of 5-HMF and FF after a period of cold storage were determined by high-performance liquid chromatography (HPLC). Then, we compared the toxicity effects of 5-HMF (2, 20, or 200 µM) in milk powder matrix and standard water on the oxidative stress system of zebrafish embryos. The results showed that the concentration of 5-HMF was stable, and the concentration of FF degraded over time. 5-HMF-exposed zebrafish embryos had a LC50 value of 961 µM for 120 h. High-concentration of 5-HMF exposure resulted in developmental toxicity and induced oxidative stress. 5-HMF exposure resulted in low expression of gstr gene at 200 µM in both matrices. Moreover, sod, cat, gstr, and gpxla genes were differentially highly expressed in other groups or showed no significant difference. Residual levels in all groups were well below the exposed dose, with a maximum value of only 0.4‱. These results provided a theoretical basis for understanding the effects of 5-HMF exposure in milk powder matrix on the oxidative stress system and suggested that the presence of 5-HMF in our daily consumption of milk powder does not produce significant toxic effects and need not be overstressed.

9.
Front Bioeng Biotechnol ; 9: 757906, 2021.
Article in English | MEDLINE | ID: mdl-34746110

ABSTRACT

Peripheral nerve injuries have become a common clinical disease with poor prognosis and complicated treatments. The development of tissue engineering pointed a promising direction to produce nerve conduits for nerve regeneration. Electrical and mechanical stimulations have been incorporated with tissue engineering, since such external stimulations could promote nerve cell proliferation, migration and differentiation. However, the combination of electrical and mechanical stimulations (electromechanical stimulation) and its effects on neuron proliferation and axon outgrowth have been rarely investigated. Herein, silver nanowires (AgNWs) embedded polydimethylsiloxane (PDMS) electrodes were developed to study the effects of electromechanical stimulation on rat pheochromocytoma cells (PC12 cells) behaviors. AgNWs/PDMS electrodes demonstrated good biocompatibility and established a stable electric field during mechanical stretching. PC12 cells showed enhanced proliferation rate and axon outgrowth under electrical stimulation alone, and the cell number significantly increased with higher electrical stimulation intensity. The involvement of mechanical stretching in electrical stimulation reduced the cell proliferation rate and axon outgrowth, compared with the case of electrical stimulation alone. Interestingly, the cellular axons outgrowth was found to depend on the stretching direction, where the axons prefer to align perpendicularly to the stretch direction. These results suggested that AgNWs/PDMS electrodes provide an in vitro platform to investigate the effects of electromechanical stimulation on nerve cell behaviors and can be potentially used for nerve regeneration in the future.

10.
Front Psychol ; 12: 725761, 2021.
Article in English | MEDLINE | ID: mdl-34777105

ABSTRACT

Artificial intelligence (AI) technology is innovatively combined with participatory video for artistic creation and communication to improve the enthusiasm of art lovers for artistic creation and communication and expand the application range of AI technology. First, the interactive framework of interactive participation video is proposed based on the analysis of the related literature of interactive non-linear video. Then, a questionnaire is designed accordingly to analyze the social needs of people on art social platforms. According to the survey results, the participatory art video online communication platform is designed and preliminarily realized. Finally, a participant video eye movement control experiment is conducted to test the performance of the participatory art video development platform. Meanwhile, the platform is evaluated through field research from two aspects of test efficiency and user experience. The results show that the operation time of the participatory art video development platform is much shorter than that of the control group. It takes only approximately 15 s to complete the annotation operation with low SD, indicating that the system performance is stable. The accuracy of the platform also reaches 100%.

11.
Science ; 373(6554): 561-567, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34326239

ABSTRACT

Solution processing of semiconductors is highly promising for the high-throughput production of cost-effective electronics and optoelectronics. Although hybrid perovskites have potential in various device applications, challenges remain in the development of high-quality materials with simultaneously improved processing reproducibility and scalability. Here, we report a liquid medium annealing (LMA) technology that creates a robust chemical environment and constant heating field to modulate crystal growth over the entire film. Our method produces films with high crystallinity, fewer defects, desired stoichiometry, and overall film homogeneity. The resulting perovskite solar cells (PSCs) yield a stabilized power output of 24.04% (certified 23.7%, 0.08 cm2) and maintain 95% of their initial power conversion efficiency (PCE) after 2000 hours of operation. In addition, the 1-cm2 PSCs exhibit a stabilized power output of 23.15% (certified PCE 22.3%) and keep 90% of their initial PCE after 1120 hours of operation, which illustrates their feasibility for scalable fabrication. LMA is less climate dependent and produces devices in-house with negligible performance variance year round. This method thus opens a new and effective avenue to improving the quality of perovskite films and photovoltaic devices in a scalable and reproducible manner.

12.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 1037-1043, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34184746

ABSTRACT

Ubiquitin-specific protease 31 (USP31) is a member of deubiquitinase family that is involved in nuclear factor-κB activation and sarcomagenesis. However, little is known about posttranslational modification in the regulation of its activity and cervical cancer cell growth. In our study, we found that the Lys1264 residue of USP31 can be modified with an acetyl group by high-resolution mass spectrometry in HeLa cell line, and site-specific mutagenesis can significantly increase USP31 ubiquitin hydrolase activity and decrease the expression of p65. When being transfected with a plasmid expressing mutated USP31, the number of cancer cells was significantly decreased. We also observed that mutated USP31 could promote apoptosis but not cell cycle by flow cytometer analysis. Overexpression of mutated USP31 could reverse the effect in USP31 knockdown cell line. To further investigate its activity in tumorigenesis, deacetylase sirtuin 1 (Sirt1) was shown to interact with USP31 by co-immunoprecipitation and blocking the function of Sirt1 by knockdown or the inhibitor nicotinamide could increase the acetylation of USP31. When Lys1264 of USP31 mutated, Sirt1 could not remove its acetylation and alter the expression level of p65. Finally, inhibition or knockdown of Sirt1 suppressed USP31 activity in HeLa cell line, leading to cisplatin-induced apoptosis resistance. Therefore, acetylation at Lys1264 suppresses USP31 activity and plays a protective role in cancer cell growth. Our study contributes to understanding the mechanism of USP31 activity regulation and its role in tumorigenesis.


Subject(s)
Neoplasm Proteins/metabolism , Ubiquitin-Specific Proteases/metabolism , Uterine Cervical Neoplasms/enzymology , Acetylation , Female , HeLa Cells , Humans , Lysine , Neoplasm Proteins/genetics , Ubiquitin-Specific Proteases/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
13.
Biofabrication ; 13(3)2021 05 05.
Article in English | MEDLINE | ID: mdl-33873178

ABSTRACT

Tubular scaffolds serve as a controllable extracellular environment to guide the repair and regeneration of tissues. But it is still a challenge to achieve both excellent mechanical properties and cell compatibility of artificial scaffolds for long-term structural and biological stability. In this study, a four-step solution casting method was developed to fabricate dual-layer cell-laden tubular scaffolds for nerve and bile duct regeneration. The dual-layer tubular scaffold consisted of a bone marrow mesenchymal stem cells (BMSCs)-laden hydrogel inner layer and an outer layer of gelatin methacrylate (GelMA)/polyethylene glycol diacrylate. While the inner layer had a good biocompatibility, the outer layer had desired mechanical properties. The interfacial toughness, Young's modulus, maximum tensile strain, and compressive modulus of dual-layer tubular scaffolds were 65 J m-2, 122.37 ± 23.21 kPa, 100.87 ± 40.10%, and 39.14 ± 18.56 N m-1, respectively. More importantly, the fabrication procedure was very cell-friendly, since the BMSC viability encapsulated in the inner layer of 10% (w/v) GelMA reached 94.68 ± 0.43% after 5 d of culture. Then, a preliminary evaluation of the potential application of dual-layer tubular scaffolds as nerve conduits and biliary scaffolds was performed, and demonstrated that the cell-laden dual-layer tubular scaffolds proposed in this work are expected to extend the application of tubular scaffolds in tissue engineering.


Subject(s)
Nerve Regeneration , Tissue Engineering , Tissue Scaffolds , Bile Ducts , Gelatin
14.
Chembiochem ; 22(11): 1948-1954, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33783945

ABSTRACT

Dopamine is an essential neurotransmitter and its detection is important for bioanalytical chemistry. Two very different DNA aptamers have been reported for dopamine, one derived from an RNA aptamer (named Apt1) and other obtained via direct aptamer selection (named Apt2). In this study, we used four homogeneous binding assays to compare these two DNA dopamine aptamers. Thiazole orange (TO) fluorescence assay indicated that the Apt2 specifically bound with dopamine with a Kd of 2.37 µM, which was consistent with that from the isothermal titration calorimetry (ITC) assay. However, Apt1 had much less TO fluorescence change and also no signal from ITC. By labeling the two ends of the two aptamers by a fluorophore and a quencher, the aptamer beacons showed binding of dopamine only for Apt2. Finally, the label-free AuNP-based colorimetric assay showed no difference between these two aptamer sequences, and even non-binding random DNA showed the same response, indicating that AuNPs were not a good probe for detecting dopamine. According to the data, Apt1 does not appear to be able to bind dopamine specifically, while Apt2 showed specific binding and could be used for developing related biosensors.


Subject(s)
Aptamers, Nucleotide/chemistry , Dopamine/analysis , Benzothiazoles/chemistry , Calorimetry , Fluorescent Dyes/chemistry , Quinolines/chemistry
15.
Adv Mater ; 33(3): e2006170, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33300231

ABSTRACT

Ion dissociation has been identified to determine the intrinsic stability of perovskite solar cells (PVSCs), but the underlying degradation mechanism is still elusive. Herein, by combining highly sensitive sub-bandgap external quantum efficiency (s-EQE) spectroscopy, impedance analysis, and theoretical calculations, the evolution of defect states in PVSCs during the degradation can be monitored. It is found that the degradation of PVSCs can be divided into three steps: 1) dissociation of ions from perovskite lattices, 2) migration of dissociated ions, and 3) consumption of I- by reacting with metal electrode. Importantly, step (3) is found to be crucial as it will accelerate the first two steps and lead to continuous degradation. By replacing the metal with more chemically robust indium tin oxide (ITO), it is found that the dissociated ions under light soaking will only saturate at the perovskite/ITO interface. Importantly, the dissociated ions will subsequently restore to the corresponding vacancies under dark condition to heal the perovskite and photovoltaic performance. Such shuttling of mobile ions without consumption in the ITO-contact PVSCs results in harvesting-rest-recovery cycles in natural day/night operation. It is envisioned that the mechanism of the intrinsic perovskite material degradation reported here will lead to clearer research directions toward highly stable PVSCs.

16.
Biosens Bioelectron ; 173: 112798, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33197768

ABSTRACT

Dopamine is one of the most important neurotransmitters. A high-quality DNA aptamer for dopamine was reported in 2018. However, fundamental understanding of its binding and folding is lacking, which is critical for related biosensor design. Herein, we performed careful assays using a label-free technique called isothermal titration calorimetry (ITC) to study its secondary structure. We divided this aptamer into four regions and individually examined each of them. We confirmed two stems, but the third stem is believed to be part of a loop. The aptamer was then truncated. The original aptamer had a Kd of 2.2 ± 0.3 µM at 25 °C. Shortening the structure by one or two base pairs increased the Kd to 6.9 and 44.4 µM, respectively. Dopamine binding was promoted by both increasing the Mg2+ concentration and decreasing the temperature. At 5 °C, a Kd of 0.4 µM was achieved. Based on this understanding, we designed two fluorescence resonance energy transfer (FRET) quenching biosensors that differ only by a base pair. The shorter sensor had 3-fold higher sensitivity and a detection limit of 0.9 µM. In 1% fetal bovine serum, the sensor retained a similar limit of detection of 1.14 µM. A two-fluorophore ratiometric FRET sensor was also demonstrated with a low detection limit of 0.12 µM. This work indicated the feasibility of designing folding-based sensors for dopamine, and this design can be extended to other sensing modalities such as electrochemistry and colorimetry.

17.
Mikrochim Acta ; 187(12): 668, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33215333

ABSTRACT

A chloramphenicol (CAP)-binding aptamer of 80 nucleotides (nt) was reported in 2011. In 2014, it was truncated to 40 nt and has since been used by most researchers, although a careful binding study is still lacking. In this work, binding assays using isothermal titration calorimetry and various DNA-staining dyes were performed. By comparing the truncated aptamer with three control sequences, no specific binding of CAP was observed in each case. The secondary structures of the original and truncated aptamers were analyzed, and it was shown that the likelihood of the truncated aptamer to retain the same binding mechanism as the original sequence is low. We further examined gold nanoparticle (AuNP)-based label-free colorimetric assays. By quantifying the extinction ratio at 620 nm over that at 520 nm, a similar color response was observed regardless of the sequence of DNA, suggesting the color change mainly reflected other events such as the adsorption of CAP by the AuNPs, instead of aptamer binding to CAP. Salt-induced aggregation experiments suggested direct adsorption of CAP on AuNPs. CAP only weakly inhibited DNA adsorption by AuNPs but did not displace pre-adsorbed DNA. Therefore, CAP adsorption by AuNPs needs to be considered when designing related sensors, for example, by using non-aptamer sequences as controls. This work calls for careful confirmation of aptamer binding and control experiments for designing aptamer and AuNP-based biosensors.


Subject(s)
Aptamers, Nucleotide/chemistry , Chloramphenicol/analysis , Colorimetry/methods , Adsorption , Anti-Bacterial Agents/analysis , Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry
18.
Phys Chem Chem Phys ; 22(23): 13143-13153, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32490855

ABSTRACT

Polymer dielectrics with high dielectric performances and superior discharge energy capability are highly desirable for advanced electrostatic capacitor applications. However, the paradoxical relationship between dielectric polarization and electric breakdown behavior generally hinder their further enhancement in energy storage performances. Herein, polymer blended composite films with high energy storage capability were successfully fabricated by blending together poly(vinylidene fluoride) (PVDF) polymer and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer. The P(VDF-TrFE-CFE) terpolymer has a high dielectric constant to provide a large electric displacement under an applied electric field far below its breakdown field, which is anticipated to modulate the dielectric polarization behavior of PVDF polymer when blended in different proportions. Consequently, the polymer blended composite film consisting of 20 wt% (P(VDF-TrFE-CFE)) terpolymer exhibits a high discharge energy density of 13.63 J cm-3 at an enhanced breakdown strength of 480 MV m-1. This obtained high discharge energy density is 84% higher than the pure PVDF film and 582% higher than a commercialized biaxially oriented polypropylene (BOPP). Large interfacial polarization and strong interaction of polymer chains between the PVDF polymer and P(VDF-TrFE-CFE) terpolymer may contribute to the tunable dielectric constant and electric breakdown strength, thus promoting the energy storage capability. This work establishes a facile, but effective approach to achieve the high energy storage capability of PVDF polymer-based flexible composite films for capacitive energy storage applications.

19.
Anal Chem ; 92(13): 9370-9378, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32515584

ABSTRACT

Target-directed aptamer adsorption by gold nanoparticles (AuNPs) has been widely used to develop label-free colorimetric biosensors. However, the potential interactions between target molecules and AuNPs have not been considered, which may lead to misinterpretation of analytical results. In this work, the detection of dopamine, melamine, and K+ was studied as model systems to address this problem. First, dopamine and two control molecules all induced the aggregation of citrate-capped AuNPs with apparent Kd's of 5.8 µM dopamine, 51.6 µM norepinephrine, and 142 µM tyramine. Isothermal titration calorimetry measured the aptamer Kd to be 1.9 µM dopamine and 16.8 µM norepinephrine, whereas tyramine cannot bind. Surface enhanced Raman spectroscopy confirmed direct adsorption of dopamine, and the adsorbed dopamine inhibited the adsorption of DNA. Using a typical salt-induced colorimetric detection protocol, a similar color response was observed regardless of the sequence of DNA, indicating the observed color change reflected the adsorption of dopamine by the AuNPs instead of the binding of dopamine by the aptamer. For this label-free sensor to work, the interaction between the target molecule and AuNPs should be very weak, while dopamine represents an example of strong interactions. For the other two systems, the melamine detection did not reflect aptamer binding either but the K+ detection did, suggesting melamine also strongly interacted with AuNPs, whereas K+ had very weak interactions with AuNPs. Since each target molecule is different, such target/AuNP interactions need to be studied case-by-case to ensure the sensing mechanism.


Subject(s)
Aptamers, Nucleotide/metabolism , Biosensing Techniques/methods , Dopamine/analysis , Metal Nanoparticles/chemistry , Triazines/analysis , Adsorption , Aptamers, Nucleotide/chemistry , Citric Acid/chemistry , Colorimetry , DNA/chemistry , Gold/chemistry
20.
Ecotoxicol Environ Saf ; 196: 110533, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32247241

ABSTRACT

1-naphthol (1-NAP) is the main metabolite of pesticide carbaryl and naphthalene, and is also a genotoxic and carcinogenic intermediate in the synthesis of organic compound, dyes, pigment and pharmaceutical industry. In this work, two novel haptens were designed and synthesized for developing a competitive indirect enzyme-linked immunosorbent assay (ciELISA) method for 1-NAP in urine samples. The assay showed a limit of detection of 2.21 ng/mL and working range from 4.02 ng/mL to 31.25 ng/mL for 1-NAP in optimized working buffer. The matrix effect of samples was eliminated via 15-fold dilution of optimized working buffer. Good average recoveries (102.4%-123.4%) with a coefficient of variation from 11.7% to 14.7% was obtained for spiked urine samples. Subsequent instrument verification test showed good correlation between the results of ciELISA and high-performance liquid chromatography. The developed ciELISA is a high-throughput tool to monitor 1-NAP in urine, which can provide technical support for the establishment of biological exposure level for the exposure to carbaryl, naphthalene and other related pollutants.


Subject(s)
Antibodies, Monoclonal/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Haptens/chemistry , Naphthols/urine , Pesticide Residues/urine , Antibodies, Monoclonal/immunology , Carbaryl/metabolism , Environmental Exposure/analysis , Limit of Detection , Naphthalenes/metabolism , Naphthols/immunology , Pesticide Residues/immunology , Pesticide Residues/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...