Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep Med ; 121: 102-110, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959716

ABSTRACT

OBJECTIVES: To explore the causal relationships between sex hormone levels and incidence of isolated REM sleep behavior disorder (iRBD). METHODS: In our study, we utilized Genome-Wide Association Studies (GWAS) data for iRBD, including 9447 samples with 1061 cases of iRBD provided by the International RBD Study Group. Initially, we conducted a two-sample univariate MR analysis to explore the impact of sex hormone-related indicators on iRBD. This was followed by the application of multivariable MR methods to adjust for other hormone levels and potential confounders. Finally, we undertook a network MR analysis, employing brain structure Magnetic Resonance Imaging (MRI) characteristics as potential mediators, to examine whether sex hormones could indirectly influence the incidence of iRBD by affecting brain structure. RESULTS: Bioavailable testosterone (BioT) is an independent risk factor for iRBD (Odds Ratio [95 % Confidence Interval] = 2.437 [1.308, 4.539], P = 0.005, corrected-P = 0.020), a finding that remained consistent even after adjusting for other sex hormone levels and potential confounders. Additionally, BioT appears to indirectly increase the risk of iRBD by reducing axial diffusivity and increasing the orientation dispersion index in the left cingulum and cingulate gyrus. CONCLUSIONS: Our research reveals that elevated levels of BioT contribute to the development of iRBD. However, the specific impact of BioT on different sexes remains unclear. Furthermore, high BioT may indirectly lead to iRBD by impairing normal pathways in the left cingulum and cingulate gyrus and fostering abnormal pathway formation.

2.
Brain Res ; 1822: 148660, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37924925

ABSTRACT

Freezing of gait (FOG) is one of the most distressing features of Parkinson's disease (PD), increasing the risks of fractures and seriously affecting patients' quality of life. We aimed to examine the potential diagnostic roles of serum neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP) in PD patients with FOG (PD-FOG). We included 99 patients, comprising 54 PD patients without FOG (PD-NoFOG), 45 PD-FOG and 37 healthy controls (HCs). Our results indicated serum markers were significantly higher in PD-FOG and postural instability and gait difficulty (PIGD) motor subtype patients than in PD-NoFOG and non-PIGD subtype patients (P < 0.05), respectively. Patients with high concentrations of the markers NFL and GFAP had higher PIGD scores and greater FOG severity than those with low concentrations. Moreover, serum levels of both NFL and GFAP were significantly positively associated with age, FOG severity, PD-FOG status, and negatively associated with Mini-Mental State Examination (MMSE) scores. Logistic regression analysis identified serum levels of NFL and GFAP as independent risk factors for PD-FOG. Mediation analysis revealed that MMSE scores fully mediated the relationship between serum GFAP levels and FOG-Q scores, accounting for 33.33% of the total effects (indirect effect = 0.01, 95% CI 0.01-0.02). NFL levels differentiated PD-FOG from PD-NoFOG with reliable diagnostic accuracy (AUC 0.75, 95% CI 0.66-0.84), and the combination of NFL, GFAP, duration and MMSE scores demonstrated high accuracy (AUC 0.84, 95% CI 0.76-0.91). Our findings support the notion that NFL and GFAP may be potential biomarkers for the diagnosis of PD-FOG.


Subject(s)
Gait Disorders, Neurologic , Glial Fibrillary Acidic Protein , Parkinson Disease , Humans , Biomarkers , Gait , Gait Disorders, Neurologic/blood , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Glial Fibrillary Acidic Protein/blood , Intermediate Filaments , Parkinson Disease/complications , Parkinson Disease/diagnosis , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...