Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Chem Sci ; 15(26): 10164-10171, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966378

ABSTRACT

Shearing-induced nucleation is known in our daily lives, yet rarely discussed in nano-synthesis. Here, we demonstrate an unambiguous shearing-induced growth of Au nanowires. While in static solution Au would predominately deposit on pre-synthesized triangular nanoplates to form nano-bowls, the introduction of stirring or shaking gives rise to nanowires, where an initial nucleation could be inferred. Under specific growth conditions, CTAB is responsible for stabilizing the growth materials and the resulting oversaturation promotes shearing-induced nucleation. At the same time, all Au surfaces are passivated by ligands, so that the growth materials are diverted to relatively fresher sites. We propose that the different degrees of "focused growth" in active surface growth could be represented by watersheds of different slopes, so that the subtle differences between neighbouring sites would set course to opposite pathways, with some sites becoming ever more active and others ever more inhibited. The shearing-induced nuclei, with their initially ligand-deficient surface and higher accessibility to growth materials, win the dynamic inter-particle competition against other sites, explaining the dramatic diversion of growth materials from the seeds to the nanowires.

2.
Pharm Res ; 41(6): 1257-1270, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844745

ABSTRACT

PURPOSE: Cinchoninze hydrochloride solves the problem of the low solubility of cinchonine, but it is unstable and susceptible to deliquescence. In this study, we designed and prepared cinchonine cocrystal salts or cinchonine salts with better stability, solubility and antioxidant activity than cinchonine. METHOD: We successfully synthesized and characterized three cinchonine salts, namely, cinchonine-fumaric acid, cinchonine-isoferulic acid, and cinchonine-malic acid. The high humidity (92.5% RH) and high temperature (60°C) tests were conducted to determine the physical stability and hygroscopicity of cinchonine hydrochloride, cinchonine and three cinchonine salts. And the ultraviolet spectrophotometry was conducted to determine the equilibrium solubility and intrinsic dissolution rate of cinchonine and salts. Moreover, the DPPH, ABTS, and FRAP assays determined the antioxidant activity of cinchonine and salts. RESULT: Compared with cinchonine hydrochloride and cinchonine, all three cinchonine salts exhibited good physical stability over 15 days under high humidity (92.5% RH) and high temperature (60°C) conditions. While cinchonine and cinchonine hydrochloride are categorized as hygroscopic and deliquescent, respectively, three cinchonine salts are classified as slightly hygroscopic, meaning that they have a lower hygroscopicity than cinchonine and cinchonine hydrochloride. And three cinchonine salts had higher equilibrium solubility, faster intrinsic dissolution rates, and higher antioxidant activity in comparison to cinchonine. Moreover, they showed a "spring and parachute" pattern in the phosphate buffer (pH = 6.8). CONCLUSION: Cocrystallization technology is a viable option for improving cinchonine's poor physicochemical qualities.


Subject(s)
Antioxidants , Crystallization , Drug Stability , Solubility , Antioxidants/chemistry , Antioxidants/pharmacology , Wettability , Chemistry, Pharmaceutical/methods , Humidity , Salts/chemistry
3.
Ultrason Sonochem ; 107: 106924, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820931

ABSTRACT

It is a challenge to study the nucleation of cavitation bubbles, which critically depends on nanoscale morphological features. Our recent advances in synthesizing colloidal negative-curvature nanoparticles (NGC-NPs) offer a rare opportunity, in comparison to the conventional studies of bulk substrates, where it is difficult to obtain consistent and well-defined surface features. In order to quantitatively assess their effects, we exploit the radical-induced color change of [Fe(SCN)6]3-, which turned out to be a more convenient method than the bending of AgNWs and the fluorescence-based methods. We show that the NGC-NPs outperform positive-curvature nanoparticles (PSC-NPs) and homogeneous nucleation, in terms of promoting cavitation. The NGC-NPs provide a higher percentage of gas-solid interface, and thus reduces the activation barrier during the critical stage of bubble nucleation. This leads a higher probability of cavitation and transforms more energy from ultrasonication to radical formation and shockwaves.

4.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Article in English | MEDLINE | ID: mdl-38585654

ABSTRACT

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Subject(s)
Klebsiella Infections , Lung , Humans , Mice , Animals , Lung/pathology , Dopamine , Klebsiella pneumoniae/metabolism , Macrophages/microbiology , Cytokines/metabolism , Klebsiella/metabolism , Cell Proliferation , Klebsiella Infections/microbiology , Mice, Inbred C57BL
5.
ACS Appl Mater Interfaces ; 16(6): 7883-7893, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38299449

ABSTRACT

Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.

6.
Int J Spine Surg ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413236

ABSTRACT

BACKGROUND: The formation of sandwiched vertebrae (SDVs) after percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP) has become a common phenomenon. Whether SDVs are more likely to fracture is still controversial. Therefore, we conducted a meta-analysis to provide medical evidence for whether SDVs are more prone to refracture than non-SDVs (NSDVs) after PVP or PKP. METHODS: This study was conducted in accordance with the criteria of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Several databases, including PubMed, Embase, Medline databases, China National Knowledge Infrastructure, Wanfang, and Weipu, were thoroughly searched for relevant studies included from any point up until June 2022. Statistical analyses were performed using Revman 5.4. RESULTS: A total of 4052 individuals from 9 studies were enrolled. Overall, patients with SDV presented more risk to have refracture than patients with NSDV (OR = 1.57, P = 0.04). The incidences of refracture were comparable between the 2 cohorts in studies with a follow-up time less than 3 years (OR = 1.28, P = 0.49). However, patients with SDV were more prone to have refracture than patients with NSDV in studies with a follow-up time longer than 3 years (OR = 1.92, P = 0.009). Moreover, patients with SDV were more likely to have refracture than patients with NSDV in studies that involved both PVP and PKP (OR = 1.62, P = 0.002). In addition, age, low bone density, and postoperative kyphosis angle of sandwich fracture segments >10° were independent factors to predict refracture. CONCLUSIONS: Patients with SDV were more likely to have refracture after PVP or PKP, especially when the follow-up time was longer than 3 years.

7.
Inorg Chem ; 62(44): 18257-18266, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37867365

ABSTRACT

Ruthenium oxide (RuO2), due to its comparable binding energy with *H and cost-effectiveness against Pt, has emerged as a pivotal electrocatalyst for oxygen evolution reaction (OER). In the present study, RuO2 nanocrystals (NCs) and nanowires (NWs) were obtained by a molten salt process and the morphology, crystal structure, and local bonding features were examined by using electron microscopy and X-ray absorption spectroscopy. From the electrochemical measurement, both RuO2 NCs and NWs exhibit favorable stability and activity toward oxygen evolution reaction in an alkali medium, althought NCs exhibit higher activity, which is likely attributed to the larger surface area and the high local structural disorder. The theoretical calculation reveals that RuO2 NWs with a primary (110) orientation show a higher overpotential due to its d-band center's proximity to the Fermi level versus (101). The present work suggests that the molten salt process could be an efficient method for producing metal oxide catalysts with tailorable geometry and performances.

8.
Sci Adv ; 9(43): eadi8446, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37878698

ABSTRACT

Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for their great success in oceans, which have a great diversity in their pigment, protein compositions, and subunit organizations. We report a unique structure of photosystem II (PSII)-FCPII supercomplex from Thalassiosira pseudonana at 2.68-Å resolution by cryo-electron microscopy. FCPIIs within this PSII-FCPII supercomplex exist in dimers and monomers, and a homodimer and a heterodimer were found to bind to a PSII core. The FCPII homodimer is formed by Lhcf7 and associates with PSII through an Lhcx family antenna Lhcx6_1, whereas the heterodimer is formed by Lhcf6 and Lhcf11 and connects to the core together with an Lhcf5 monomer through Lhca2 monomer. An extended pigment network consisting of diatoxanthins, diadinoxanthins, fucoxanthins, and chlorophylls a/c is revealed, which functions in efficient light harvesting, energy transfer, and dissipation. These results provide a structural basis for revealing the energy transfer and dissipation mechanisms and also for the structural diversity of FCP antennas in diatoms.


Subject(s)
Diatoms , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Chlorophyll A/metabolism , Diatoms/chemistry , Cryoelectron Microscopy , Chlorophyll Binding Proteins/chemistry , Chlorophyll Binding Proteins/metabolism , Polymers/metabolism
9.
Structure ; 31(10): 1247-1258.e3, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37633266

ABSTRACT

Light-harvesting complexes of photosystem II (LHCIIs) in green algae and plants are vital antenna apparatus for light harvesting, energy transfer, and photoprotection. Here we determined the structure of a siphonous-type LHCII trimer from the intertidal green alga Bryopsis corticulans by X-ray crystallography and cryo-electron microscopy (cryo-EM), and analyzed its functional properties by spectral analysis. The Bryopsis LHCII (Bry-LHCII) structures in both homotrimeric and heterotrimeric form show that green light-absorbing siphonaxanthin and siphonein occupied the sites of lutein and violaxanthin in plant LHCII, and two extra chlorophylls (Chls) b replaced Chls a. Binding of these pigments expands the blue-green light absorption of B. corticulans in the tidal zone. We observed differences between the Bry-LHCII homotrimer crystal and cryo-EM structures, and also between Bry-LHCII homotrimer and heterotrimer cryo-EM structures. These conformational changes may reflect the flexibility of Bry-LHCII, which may be required to adapt to light fluctuations from tidal rhythms.


Subject(s)
Chlorophyta , Light-Harvesting Protein Complexes , Cryoelectron Microscopy , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Chlorophyta/metabolism , Thylakoids , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism
10.
Clin Spine Surg ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37559207

ABSTRACT

STUDY DESIGN: A meta-analysis. OBJECTIVE: This study aimed to analyze the incidence of spontaneous resorption of lumbar disk herniation (LDH) after conservative treatment. SUMMARY OF BACKGROUND DATA: The resorption of intervertebral disks has been more frequently reported, but there is a lack of reference to the probability of resorption. METHODS: We strictly refer to the standard established in the PRISMA (Preferred Reporting Items for a Systematic Review and Meta-analysis) statement, comprehensively searched electronic databases using the terms related to the spontaneous resorption of LDH. Two reviewers independently evaluated the potential studies, extracted, and analyzed the enrolled data. RESULTS: Thirty-one studies with 2233 patients who received conservative treatment were included for this analysis. We found that the pooled overall incidence of disk resorption was 70.39%, 87.77% for disk sequestration, 66.91% for disk extrusion, 37.53% for disk protrusion, and 13.33% for disk bugle, respectively. The resorption incidence in of 25%≤ reduction of disk herniation (RDH) 50%, RDH≥50%, and RDH=100% were 40.19%, 43.62, and 36.89%. The resorption incidence was 66.98% in Japan, 61.66% in the United States, 83.52% in Korea, 60.68% in China, 78.30% in the UK, 56.70% in Italy, and 83.68% in Turkey, respectively. Subgroup analysis showed that there was no significant difference in resorption incidence among prospective, retrospective studies and randomized controlled trials (P=0.77), and there was no significant difference in evaluation method among qualitative and quantitative studies (P=0.05). CONCLUSIONS: The existing evidence shows that the overall resorption incidence of LDH was 70.39%, the resorption incidence of ruptured LDH is higher than that of contained LDH. There are significant differences in the resorption incidence among countries. The resorption process mainly occurred within 6 months of conservative treatment.

11.
Nanoscale ; 15(5): 2394-2401, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36651126

ABSTRACT

We show that it is possible to spontaneously form all-enclosed compartments with microporous shells and enriched biopolymers via simple coprecipitation of silica and biopolymers. The reaction involves mild conditions and tolerates the random mixing of multiple reagents. Such a synthetic advance points to a new direction for resolving the chicken-egg dilemma of how the early life forms were hosted: without a physical barrier it would be difficult to maintain organized reactions, but without organized reactions, it would be difficult to create a cell membrane. In our synthesis, the divalent cation Ca2+ plays a critical role in the co-precipitation and in creating hollow compartments after simple dilution with water. The precursor of silica, poly(silicic acid), is a negatively charged, cross-linked polymer. It could be co-precipitated with negatively charged biopolymers such as DNA and proteins, whereas the remaining silica precursor forms a conformal and microporous shell on the surface of the initial precipitate. After etching, the biopolymers are retained inside the hollow compartments. The fact that multiple favorable conditions are easily brought together in enclosed compartments opens new possibilities in theorizing the host of early life forms.

12.
Macromol Rapid Commun ; 44(2): e2200541, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36057795

ABSTRACT

It is shown that the aligned electrospun fibers are a convenient platform for studying the mechanical effects on nanomaterials, particularly when using surface-enhanced Raman scattering as a sensitive tool of monitoring. The ligands on the surface of the embedded Au nanoparticles fall off easily with the shear force from the stretching, in contrast to the counterparts protected by polymer/silica shells. Upon stretching, the chains of Au nanoparticles will reversibly break, as revealed by the dramatic changes in the longitudinal plasmon absorption. It is believed that such a platform will open a window for understanding mechanical effects at the nanoscale, and also a new means for synthetic control.


Subject(s)
Metal Nanoparticles , Nanostructures , Spectrum Analysis, Raman , Polymers , Gold
13.
Micromachines (Basel) ; 13(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36295942

ABSTRACT

Wide-range flexible pressure sensors are in difficulty in research while in demand in application. In this paper, a wide-range capacitive flexible pressure sensor is developed with the foaming agent ammonium bicarbonate (NH4HCO3). By controlling the concentration of NH4HCO3 doped in the polydimethylsiloxane (PDMS) and repeating the curing process, pressure-sensitive dielectrics with various porosity are fabricated to expand the detection range of the capacitive pressure sensor. The shape and the size of each dielectric is defined by the 3D printed mold. To improve the dielectric property of the dielectric, a 1% weight ratio of multi-walled carbon nanotubes (MWCNTs) are doped into PDMS liquid. Besides that, a 5% weight ratio of MWCNTs is dispersed into deionized water and then coated on the electrodes to improve the contact state between copper electrodes and the dielectric. The laminated dielectric layer and two electrodes are assembled and tested. In order to verify the effectiveness of this design, some reference devices are prepared, such as sensors based on the dielectric with uniform porosity and a sensor with common copper electrodes. According to the testing results of these sensors, it can be seen that the sensor based on the dielectric with various porosity has higher sensitivity and a wider pressure detection range, which can detect the pressure range from 0 kPa to 1200 kPa and is extended to 300 kPa compared with the dielectric with uniform porosity. Finally, the sensor is applied to the fingerprint, finger joint, and knee bending test. The results show that the sensor has the potential to be applied to human motion detection.

14.
Plant J ; 111(1): 183-204, 2022 07.
Article in English | MEDLINE | ID: mdl-35481627

ABSTRACT

Solanaceae have important economic value mainly due to their edible fruits. Physalis organ size 1/cytokinin response factor 3 (POS1/CRF3), a unique gene in Solanaceae, is involved in fruit size variation in Physalis but not in Solanum. However, the underlying mechanisms remain elusive. Here, we found that POS1/CRF3 was likely created via the fusion of CRF7 and CRF8 duplicates. Multiple genetic manipulations revealed that only POS1 and Capsicum POS1 (CaPOS1) functioned in fruit size control via the positive regulation of cell expansion. Comparative studies in a phylogenetic framework showed the directional enhancement of POS1-like expression in the flowers and fruits of Physaleae and the specific gain of certain interacting proteins associated with cell expansion by POS1 and CaPOS1. A lineage-specific single nucleotide polymorphism (SNP) caused the 68th amino acid histidine in the POS1 orthologs of non-Physaleae (Nicotiana and Solanum) to change to arginine in Physaleae (Physalis and Capsicum). Substituting the arginine in Physaleae POS1-like by histidine completely abolished their function in the fruits and the protein-protein interaction (PPI) with calreticulin-3. Transcriptomic comparison revealed the potential downstream pathways of POS1, including the brassinosteroid biosynthesis pathway. However, POS1-like may have functioned ancestrally in abiotic stress within Solanaceae. Our work demonstrated that heterometric expression and a SNP caused a single amino acid change to establish new PPIs, which contributed to the co-option of POS1 in multiple regulatory pathways to regulate cell expansion and thus fruit size in Physaleae. These results provide new insights into fruit morphological evolution and fruit yield control.


Subject(s)
Capsicum , Physalis , Solanaceae , Arginine/metabolism , Capsicum/genetics , Cytokinins/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Histidine/genetics , Histidine/metabolism , Phylogeny , Physalis/genetics , Physalis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Solanaceae/genetics
15.
Chemistry ; 28(5): e202103874, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34821417

ABSTRACT

Elaboration of enantioenriched complex acyclic stereotriads represents a challenge for modern synthesis even more when fluorinated tetrasubstituted stereocenters are targeted. We have been able to develop a simple strategy in a sequence of two unprecedented steps combining a diastereoselective aldol-Tishchenko reaction and an enantioselective organocatalyzed kinetic resolution. The aldol-Tishchenko reaction directly generates a large panel of acyclic 1,3-diols possessing a fluorinated tetrasubstituted stereocenter by condensation of fluorinated ketones with aldehydes under very mild basic conditions. The anti 1,3-diols featuring three contiguous stereogenic centers are generated with excellent diastereocontrol (typically >99 : 1 dr). Depending upon the precursors both diastereomers of stereotriads are accessible through this flexible reaction. Furthermore, from the obtained racemic scaffolds, development of an organocatalyzed kinetic resolution enabled to generate the desired enantioenriched stereotriads with excellent selectivity (typically er >95 : 5).


Subject(s)
Ketones , Catalysis , Stereoisomerism
16.
Hortic Res ; 8(1): 244, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795210

ABSTRACT

The fruits of Physalis (Solanaceae) have a unique structure, a lantern-like fruiting calyx known as inflated calyx syndrome (ICS) or the Chinese lantern, and are rich in steroid-related compounds. However, the genetic variations underlying the origin of these characteristic traits and diversity in Physalis remain largely unknown. Here, we present a high-quality chromosome-level reference genome assembly of Physalis floridana (~1.40 Gb in size) with a contig N50 of ~4.87 Mb. Through evolutionary genomics and experimental approaches, we found that the loss of the SEP-like MADS-box gene MBP21 subclade is likely a key mutation that, together with the previously revealed mutation affecting floral MPF2 expression, might have contributed to the origination of ICS in Physaleae, suggesting that the origination of a morphological novelty may have resulted from an evolutionary scenario in which one mutation compensated for another deleterious mutation. Moreover, the significant expansion of squalene epoxidase genes is potentially associated with the natural variation of steroid-related compounds in Physalis fruits. The results reveal the importance of gene gains (duplication) and/or subsequent losses as genetic bases of the evolution of distinct fruit traits, and the data serve as a valuable resource for the evolutionary genetics and breeding of solanaceous crops.

17.
Ecotoxicol Environ Saf ; 225: 112776, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34537586

ABSTRACT

Both cadmium (Cd) contamination and boron (B) deficiency in farmland soils pose a threat to the yield and quality of crops in Southern China. The present study investigated the mechanisms by which B reduces Cd accumulation in rice (Oryza sativa) seedlings. Boron supplementation partially restored the decline in shoot and root biomass caused by Cd treatment (26% and 33%, respectively), with no significant difference between the B+Cd and control groups. We also found that B significantly reduced shoot and root Cd concentrations (by 64% and 25%, respectively) but increased Cd concentration (by 43%) and proportion (from 38% to 55%) in root cell walls. Transcriptome analysis and biochemical tests suggested that B supplementation enhanced lignin and pectin biosynthesis, pectin demethylation, and sulfur and glutathione metabolism. Moreover, B decreased the expression of some Cd-induced transporter-related genes (i.e., HMA2, Nramp1, and several ABC genes). These results indicate that B relieved Cd toxicity and reduced Cd accumulation in rice seedlings by restraining Cd uptake and translocation from root to shoot by improving Cd tolerance and chelation ability. These novel findings would benefit further investigations into how B influences Cd uptake, translocation, detoxification, and accumulation in crops.


Subject(s)
Oryza , Seedlings , Boron/toxicity , Cadmium/toxicity , Crops, Agricultural , Oryza/genetics
18.
Ecotoxicol Environ Saf ; 225: 112787, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34544020

ABSTRACT

Cadmium (Cd) contamination of croplands has become a threat to crop food safety and human health. In this study, we investigated the effect of sulfur on the growth of water spinach under Cd stress and the amount of Cd accumulation by increasing the soil sulfate content. We found that the biomass of water spinach significantly increased after the application of sulfur while the shoot Cd concentration was considerably reduced (by 31%). The results revealed that sulfur could promote the expression of PME and LAC genes, accompanied by an increase in PME activity and lignin content. Also, the cell wall Cd content of water spinach roots was significantly increased under sulfur treatment. This finding suggests that sulfur could enhance the adsorption capacity of Cd by promoting the generation of cell wall components, thereby inhibiting the transportation of Cd via the apoplastic pathway. In addition, the higher expression of Nramp5 under the Cd1S0 (concentration of Cd and sulfur are 2.58 and 101.31 mg/kg respectively) treatment led to increased Cd uptake. The CAX3 and ABC transporters and GST were expressed at higher levels along with a higher cysteine content and GSH/GSSR value under Cd1S1 (concentration of Cd and sulfur are 2.60 and 198.36 mg/kg respectively) treatment, which contribute to the Cd detoxification and promotion of Cd compartmentalization in root vacuoles, thereby reducing the translocation of Cd to the shoot via the symplastic pathway.


Subject(s)
Ipomoea , Cadmium/toxicity , Gene Expression Profiling , Humans , Sulfur , Transportation
19.
Virus Evol ; 7(1): veab022, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33959381

ABSTRACT

Trillions of viruses inhabit the gastrointestinal tract. Some of them have been well-studied on their roles in infection and human health, but the majority remains unsurveyed. It has been established that the composition of the gut virome is highly variable based on the changes of diet, physical state, and environmental factors. However, the effect of host genetic factors, for example ethnic origin, on the gut virome is rarely investigated. Here, we characterized and compared the gut virome in a cohort of local Chinese residents and visiting Pakistani individuals, each group containing twenty-four healthy adults and six children. Using metagenomic shotgun sequencing and assembly of fecal samples, a huge number of viral operational taxonomic units (vOTUs) were identified for profiling the DNA and RNA viromes. National background contributed a primary variation to individuals' gut virome. Compared with the Chinese adults, the Pakistan adults showed higher macrodiversity and different compositional and functional structures in their DNA virome and lower diversity and altered composition in their RNA virome. The virome variations of Pakistan children were not only inherited from that of the adults but also tended to share similar characteristics with the Chinese cohort. We also analyzed and compared the bacterial microbiome between two cohorts and further revealed numerous connections between viruses and bacterial host. Statistically, the gut DNA and RNA viromes were covariant to some extent (P < 0.001), and they both correlated the holistic bacterial composition and vice versa. This study provides an overview of the gut viral community in Chinese and visiting Pakistanis and proposes a considerable role of ethnic origin in shaping the virome.

20.
Org Lett ; 23(11): 4332-4336, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33999644

ABSTRACT

The stereocontrol of tertiary alcohols represents a recurrent challenge in organic synthesis. In the present paper, we describe a simple, efficient, and indirect method to enantioselectively prepare tertiary alcohols through a chiral isothiourea catalyzed selective acylation of adjacent secondary alcohols. This transformation enables the kinetic resolution (KR) of easily prepared racemic diastereoenriched secondary/tertiary diols providing both monoesters and starting diols in highly enantioenriched forms (s-value >200).

SELECTION OF CITATIONS
SEARCH DETAIL
...