Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Lett ; 46(20): 5149-5152, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34653138

ABSTRACT

We propose and demonstrate a two-color formaldehyde planar laser induced fluorescence spectroscopy thermometry scheme using the third-harmonic of injection-seeded Nd:YAG lasers. The 28183.5cm-1 and 28184.5cm-1 peaks of formaldehyde are identified to measure the low-temperature combustion zone. Using a fast dual-wavelength-switching burst mode amplifier and a high-speed camera, high-repetition-rate (20 kHz) temperature field measurement is validated on a laminar coflow diffusion flame and demonstrated on a turbulent reacting jet in hot crossflow. Directly using the 355 nm output has the advantage of large energy and high signal-to-noise ratio. Combined with the fast dual-wavelength-switching method, the proposed scheme can greatly reduce experimental complexity and improve the understanding of practical combustors.

2.
Opt Lett ; 45(20): 5756-5759, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33057277

ABSTRACT

Dual-plane stereoscopic particle image velocimetry (PIV) is capable of quantifying the flow field in terms of three-component (3C) flow vectors and 3C vorticity vectors simultaneously. Here, we present a test rig to carry out the 20 kHz dual-plane stereo PIV measurements on a premixed swirling flame by using a two-legged burst-mode laser. Other than the traditional methods employing the laser polarization direction and the two-color separation methods, two same-color laser sheets with a 100 ns delay were adopted to separate the imaging processes for the two pairs of cameras using the image straddling method. Each laser sheet with the same wavelength of 532 nm has a pulse cyclic frequency of 20 kHz within each burst generated by the high-repetition-rate burst-mode laser. 3C velocity vectors of a swirling flame were obtained based on the sequential particle images for each laser sheet. In spite of non-perfect simultaneous flow measurements on the two spatially separated laser sheets, the velocity error caused by the 100 ns delay on top of a 50 µs duration, which was used for the velocity vector calculation, is negligible. This short-delay separation method significantly simplifies the experimental setup for dual-plane stereo PIV measurements, especially for low-speed flows.

3.
Appl Opt ; 58(10): C68-C78, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045033

ABSTRACT

Lean premixed swirling flames are important in practical combustors, but a commonly encountered problem of practical swirl combustors is thermo-acoustic instability, which may cause internal structure damage to combustors. In this research, a high-repetition-rate burst-mode laser is used for simultaneous particle image velocimetry and planar laser-induced fluorescence measurement in an unconfined acoustically excited swirl burner. The time-resolved flow field and transient flame response to the acoustic perturbation are visualized at 20 kHz, offering insight into the heat release rate oscillation. The premixed mixture flow rate and acoustic modulation are varied to study the effects of Reynolds number, Strouhal number, and acoustic modulation amplitude on the swirling flame. The results suggest that the Strouhal number has a notable effect on the periodic movements of the inner recirculation zone and swirling flame configuration.

4.
Opt Express ; 26(24): 31983-31994, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30650777

ABSTRACT

The detailed understandings of temperature profiles and flow-flame interaction in unsteady premixed swirling flames are crucial for the development of low emission turbine engines. Here, a phase-locked tomographic reconstruction technique measuring the large absorption cross section of CO2 at its mid-infrared fundamental band around 4.2 µm is used to acquire the flame temperature and in situ CO2 volume fraction distribution in a turbulent premixed swirling flame under different levels of external acoustic forcing amplitude. The temporally resolved temperature field variation reveals large temperature fluctuation in unsteady premixed swirling flames produced near the nozzle exit due to vortex-driven mixing of surrounding cold gas. The temperature fluctuation quickly dissipates when moving downstream of the flame with the flow velocity of the burnt gas. The accurate high temporal resolution thermodynamic measurements of the phase-locked tomographic thermometry technique reported in this work can be generally applied to periodic reacting flows.

5.
Appl Spectrosc ; 71(7): 1494-1505, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28664781

ABSTRACT

Broadband mid-infrared molecular spectroscopy is essential for detection and identification of many chemicals and materials. In this report, we present stand-off mid-infrared spectra of 1,3,5-trinitro-1,3,5-triazine or cyclotrimethylene trinitramine (RDX) residues on a stainless-steel surface measured by a broadband external cavity quantum cascade laser (QCL) system. The pulsed QCL is continuously scanned over 800 cm-1 in the molecular fingerprint region and the amplitude of the reflection signal is measured by either a boxcar-averager-based scheme or a lock-in-amplifier-based scheme with 1 MHz and 100 kHz quartz crystal oscillators. The main background noise is due to the laser source instability and is around 0.1% of normalized intensity. The direct absorption spectra have linewidth resolution around 0.1 cm-1 and peak height sensitivity around 10-2 due to baseline interference fringes. Stand-off detection of 5-50 µg/cm2 of RDX trace adsorbed on a stainless steel surface at the distance of 5 m is presented.

6.
Angew Chem Int Ed Engl ; 54(40): 11711-5, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26276699

ABSTRACT

By using a combination of rotational spectroscopy and ab initio calculations, an unusual H-bond topology was revealed for the 2-fluoroethanol trimer. The trimer exhibits a strong heterochiral preference and adopts an open OH⋅⋅⋅OH H-bond topology while utilizing two types of bifurcated H-bonds involving organic fluorine. This is in stark contrast to the cyclic OH⋅⋅⋅OH H-bond topology adopted by trimers of water and other simple alcohols. The strengths of different H-bonds in the trimer were analyzed by using the quantum theory of atoms in molecules. The study showcases a remarkable example of a chirality-induced switch in H-bond topology in a simple transient chiral fluoroalcohol. It provides important insight into the H-bond topologies of small fluoroalcohol aggregates, which are proposed to play a key role in protein folding and in enantioselective reactions and separations where fluoroalcohols serve as a (co)solvent.

7.
Sci Rep ; 3: 1111, 2013.
Article in English | MEDLINE | ID: mdl-23346368

ABSTRACT

Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy.


Subject(s)
Lasers, Semiconductor , Pentaerythritol Tetranitrate/chemistry , Spectrophotometry, Infrared/methods , Triazines/chemistry , Trinitrotoluene/chemistry , Adsorption , Hot Temperature , Sensitivity and Specificity
8.
J Chem Phys ; 135(23): 234310, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22191878

ABSTRACT

The jet-cooled high resolution infrared (IR) spectrum of methyl acetate (MA), CH(3)-C(=O)-O-CH(3), in the C=O fundamental band region was recorded by using a rapid scan IR laser spectrometer equipped with an astigmatic multipass cell. No high resolution IR analyses of the ro-vibrational transitions between the ground and non-torsionally excited vibrational states have hitherto been reported for molecules with two inequivalent methyl rotors. Because of the two chemically different methyl tops in MA, i.e., the acetyl -CH(3) and methoxy -CH(3), each rotational energy level is split into more than two torsional sublevels by internal rotations of these methyl groups. We were able to assign ro-vibrational transitions of four torsional species by using the ground state combination differences calculated from the molecular constants of the vibrational ground state recently determined by a global fit of the microwave and millimeter wave lines [M. Tudorie, I. Kleiner, J. T. Hougen, S. Melandri, L. W. Sutikdja, and W. Stahl, J. Mol. Spectrosc. 269, 211 (2011)]. The assigned lines were successfully fitted using the BELGI-Cs-IR program to an overall standard deviation which is comparable to the measurement accuracy. This study is also of interest in understanding the role of methyl rotors in the intramolecular vibrational-energy redistribution processes in mid-size organic molecules.

9.
Phys Chem Chem Phys ; 13(31): 14235-42, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21776482

ABSTRACT

We report a combined high resolution infrared and microwave spectroscopic investigation of the acetylene-ammonia and carbonyl sulfide-ammonia complexes using a pulsed slit-nozzle multipass absorption spectrometer based on a quantum cascade laser and a pulsed nozzle beam Fourier transform microwave spectrometer, respectively. The ro-vibrational transitions of the acetylene-ammonia complex have been measured at 6 µm in the vicinity of the ν(4) band of ammonia for the first time. The previously reported pure rotational transitions have been extended to higher J and K values with (14)N nuclear quadrupole hyperfine components detected and analyzed. The spectral analysis reveals that acetylene binds to ammonia through a C-H···N weak hydrogen bond to form a C(3v) symmetric top, consistent with the previous microwave [Fraser et al., J. Chem. Phys., 1984, 80, 1423] and infrared spectroscopic study at 3 µm [Hilpert et al., J. Chem. Phys., 1996, 105, 6183]. A parallel study has also been carried out for the carbonyl sulfide-ammonia complex whose pure rotational and ro-vibrational spectra at 6 µm have been detected and analyzed for the first time. The spectral and the subsequent structural analyses, in conjunction with the corresponding ab initio calculation, indicate that the OCS-NH(3) complex assumes C(3v) symmetry with S pointing to N of NH(3), in contrast to the T-shaped geometries obtained for the isoelectronic N(2)O-NH(3) and CO(2)-NH(3) complexes.


Subject(s)
Acetylene/chemistry , Ammonia/chemistry , Microwaves , Sulfur Oxides/chemistry , Carbon/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Nitrogen/chemistry , Quantum Theory , Spectrophotometry, Infrared , Sulfur/chemistry
10.
Chemistry ; 15(1): 270-7, 2009.
Article in English | MEDLINE | ID: mdl-19040230

ABSTRACT

Fluoroalcohols show competitive formation of intra- and intermolecular hydrogen bonds, a property that may be crucial for the protein-altering process in a fluoroalcohol/water solution. In this study, we examine the intra- and intermolecular interactions of 2-fluoroethanol (FE) in its dimeric conformers by using rotational spectroscopy and ab initio calculations. Three pairs of homo- and heterochiral dimeric FE conformers are predicted to be local minima at the MP2/6-311++G(d,p) level of theory. They are solely made of the slightly distorted most stable G+g-/G-g+ FE monomer units. Jet-cooled rotational spectra of four out of the six predicted dimeric conformers were observed and unambiguously assigned for the first time. All four observed dimeric conformers have compact geometries in which the fluoromethyl group of the acceptor tilts towards the donor and ensures a large contact area. Experimentally, the insertion of the O-H group of one FE subunit into the intramolecular O-H...F bond of the other was found to lead to a higher stabilisation than the pure association through an intermolecular O-H...O-H link. The hetero- and homochiral combinations were observed to be preferred in the inserted and the associated dimeric conformers, respectively. The experimental rotational constants and the stability ordering are compared with the ab initio calculations at the MP2 level with the 6-311++G(d,p) and aug-cc-pVTZ basis sets. The effects of fluorination and the competing inter- and intramolecular hydrogen bonds on the stability of the dimeric FE conformers are discussed.


Subject(s)
Ethanol/analogs & derivatives , Algorithms , Dimerization , Ethanol/chemistry , Hydrogen Bonding , Models, Chemical , Models, Molecular , Spectroscopy, Fourier Transform Infrared , Stereoisomerism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...